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ABSTRACT

The formation of slant and cup-cone fracture under plane strain and axisymmetric conditions,
respectively, is studied using the finite element (FE) method. Constitutive models for ductile
damage proposed by Rousselier and by Gurson are applied. The respective equations allowing
for finite strain were implemented in two FE codes, ABAQUS and Zébulon. The ability of
both models to represent cup-cone fracture of round bars and shear fracture of plane strain
specimens, in general, and influences of material parameters and mesh design, in particular,
are studied. Material data of three different materials are used: a high purity modern steel, an
aluminum alloy (2024 series) and a cast iron containing spherical graphite inclusions. These
materials allow to study a wide range of initial void volume fractions, f0, and different
hardening behaviours. Two test sample geometries were selected: (i) smooth round bars, (ii)
plane strain ("Hill") specimens.
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INTRODUCTION

Constitutive models for describing damage evolution in ductile materials have found
increasing application, mainly the micromechanical GTN model by Gurson [1], Tvergaard
and Needleman [2-4], and a continuum damage mechanics approach by Rousselier [5]. They
are based on the physical understanding that in the course of plastic deformation microvoids
nucleate and grow until a localized plastic necking or fracture of the intervoid matrix occurs.
Both models modify the von Mises yield potential by introducing a single scalar damage
quantity, namely the void volume fraction, f.

These models have been successfully applied to model crack propagation in precracked
structures (Needleman and Tvergaard [6], Sun et al. [7], Brocks et al. [8], Xia et al. [9]). But
also ductile rupture of uncracked laboratory specimens such as smooth and notched round
tensile bars (Tvergaard and Needleman [3, 4], Becker et al. [10]) or plane strain specimens
(Becker and Needleman [11], Leblond et al. [12]) has been numerically simulated. Fracture of
these specimens involves both, initiation and propagation of a crack. Phenomena like "cup-
cone" fracture in round bars and "slant" fracture in plane strain specimens are observed
experimentally, see Fig. 1, where localization of damage and deformation is not perpendicular
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to the principle loading direction. The present paper studies the abilities of the Gurson and the
Rousselier model to simulate these phenomena by the finite element method and investigates
the influences of mesh design and material parameters.

Fig. 1. Cup-cone fracture in a round tensile bar (left) and slant fracture in a Hill specimen
(right)

The condition for localization, that means the possibility of forming a strain rate discontinuity
in elasto-plastic solids has been established by Rice [13], and the case of dilatant pressure
sensitive materials has been investigated by Rudnicki and Rice [14]. The susceptibility of the
Gurson model to localization was first studied by Yamamoto [15], and this model has been
used by Tvergaard [16] to investigate the evolution of shear bands. The role of kinematic
hardening was investigated by Mear and Hutchinson [17] and, together with void nucleation,
by Tvergaard [18]. However, all these analyses are limited to the idealized situation of an
infinite medium in which a discontinuity band appears. For real structures, Doghri and
Billardon [19] proposed to compute Rice's condition for localization during the FE
calculation. Following this idea, a localization indicator has been evaluated and the computed
crack path has been compared with the prediction obtained from this indicator.

SIMULATION OF DUCTILE DAMAGE AND FRACTURE

Damage models of Gurson and Rousselier
Ductile tearing of metals is dominated by the mechanisms of void nucleation at particles, void
growth and coalescence by necking of the intervoid matrx. The inelastic deformation is
described by a modified yield function and plastic potential, Φ, including the "porosity" in
terms of the void volume fraction, f,  as an additional internal variable which is responsible
for the "softening" of the material. The most common constitutive model for describing this
process was derived by Gurson [1] based on a micromechanical consideration of a spherical
and a cylindrical hole in an elasto-plastic matrix. The stress and strain fields in this
representative micro-cell are averaged over its volume by
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and an approximate yield function is obtained on a "meso-scale". Gurson's yield potential was
later modified by Tvergaard and Needleman  [2-4], giving it the final form

Φ =
3 ′ T ⋅ ⋅ ′ T 

2σY
2 + 2q1 f * cosh q2

tr T 
2σY

 

 
  

 
 − 1 + q3 f *2( ), (1)

which is adressed as GTN model. T  is the "mesoscopic" Cauchy stress tensor and ′ T  its
deviator, σY ε p( ) is the yield stress of the matrix material, and qi (i = 1, 2, 3), are
phenomenological parameters introduced by Tvergaaard and Needleman. Commonly, they are
taken as q1 = 1.5, q2 = 1.0, q3 = q1

2 = 2.25, which is also adopted here with some exceptions
concerning q2 which will be indicated later. The yield condition incorporates the effects of the
hydrostatic stress, σh = trT , and the respective effect is scaled by q2. "Porous" materials are
pressure sensitive and the inelastic deformation is not isochoric.

An alternative formulation of the plastic potential also introducing a scalar variable of
porosity has been propsed by Rousselier [5]. It is based on the concept of continuum damage
mechanics that the "effective stress" in a damaged continuum is given by ˆ T = T 1 − f( ).
Together with some considerations on thermodynamic potentials he obtained
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Here, D and σ1 are material parameters. While the actual porosity f is used as an internal
variable in Rousselier´s yield function, f* in Tvergaaard's and Needleman's modification of
Gurson's plastic potential represents an "effective" porosity,

f * =

f for f ≤ fc
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, (4)

which is supposed to describe the whole range from void growth to coalescence up to final
fracture by introducing two additional parameters, namely fc and ff.

In both models, the plastic deformation rate, Dp , is obtained assuming the normality rule of
plasticity, and the evolution of porosity is given by mass conservation,

Ý f = (1 − f )trDp with f (t0 ) = f0 . (5)

f0 is the initial void volume fraction. This equation may be modified in both models to
account for nucleation of voids by adding a second term, fnuc. For strain controlled nucleation,
this term is given by

nuc n
pf A ε=� � . (6)

A phenomenological model of nucleation proposed by Chu and Needleman [20] involves
three additional parameters, the ratio of void nucleating parameters, fn, the average nucleation



MSMF-3 Brno 2001

Materials Structure & Micromechanics of Fracture 319

strain, εn, and the standard deviation of nucleation strains, sn. A simplified nucleation term has
been used in the present investigation, assuming that nucleation starts for f > fc and An is
constant (Besson et al. [21, 22]).

Although both models of porous metal plasticity are essentially similar two important
differences have to be outlined, see Fig. 2:
1. Under pure shear loading, i.e. σh = 0, the Rousselier model predicts void growth, Ý f > 0 ,

whereas the Gurson model does not.
2. Under pure hydrostatic loading, i.e. σe = 0, the Rousselier yield surface has a vertex which

implies that, different from the Gurson model, even at high triaxiality ratios the plastic
deformation tensor always keeps a non-zero shear component.

0.0 1.0 2.0
0.0

0.5

1.0

σh / σY

Gurson
Rousselier

slope: -Df

slope: - σσσσY/σσσσI
f = 0.01

Fig. 2. Comparison of the Gurson and Rousselier yield surfaces; respective parameters
calibrated to give the same results for both models under pure shear and pure hydrostatic
stress.

Both Gurson and Rousselier model have been implemented in the FE codes ABAQUS,
following the method of Aravas [22], and Zébulon (Foerch et al. [23], Besson et al. [25]). A
fully implicit time integration scheme is used (Zhang [26]). Finite strains were treated using
co-rotational reference frames with Jaumann stress rate (Hughes and Winget [27]).

Localization indicator
Localization of strain and damage was first analyzed by Rice [13] for an elasto-plastic
material in which a planar band of strain rate discontinuity forms. This band is characterized
by its unit normal, n, and the displacement jump across the band whose orientation is denoted
by the unit vector g. In the case of porous materials, g and n are not necessarily orthogonal.
The strain rate tensor across the discontinuity band can be expressed as (Rice and Rudnicki
[28])
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D = 1
2 (gn + ng). (7)

Bifurcation is given by the condition that the second order "acoustic" tensor,  A = n ⋅ L ⋅n , has
a zero eigenvalue,

∃n : det(n ⋅ L ⋅ n) = 0 , (8)

where L  is the fourth order elasto-plastic tangent matrix within the incremental constitutive
equation Ý T = L : D . The localization indicator,

Iloc =
n

min det(n ⋅ L ⋅ n)[ ], (9)

was implemented in the FE calculations to monitor the possibility of bifurcation at any
material point. As det(n ⋅L ⋅ n) = 0  will never be met exactly, localization will be defined as
occuring when Iloc < 0  for the first time. For further details of the localization analysis see
Besson et al. [22].

Material parameters and specimens
Material data of three different materials are used:
• a high strength low alloyed ferritic-perlitic steel, X70 HSLA (Rivalin [29]),
• a 2024 aluminum alloy (Besson et al. [21]), and
• a cast iron containing spherical graphite inclusions, GGG40 (Steglich [30]).
These materials allow to study a wide range of initial void volume fractions, f0, and different
hardening behaviours. The material parameters for elasto-plastic deformation and damage
were fitted to test data of smooth and notched bars. The parameters of the damage models are
summarized in Table 1. The q-parameters are taken as q1 = 1.5 and q3 = q1

2 = 2.25, whereas q2
which scales the influence of stress triaxiality varies and is specified in the table. Different
parameter sets of the Gurson model, denoted by G, G* and Gn, respectively, were used for the
steel, which will be discussed below.
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Table 1. Parameters of the Gurson and the Rousselier model for the three investigated
materials

material steel X70 HSLA Al 2024 A GGG40

Gurson model G G* Gn

f0 0.00015 0.00015 0.00015 0.0012 0.12

fc - 0.005 0.005 0.018 0.175

ff - 0.225 - 0.18 0.235

An - - 0.2 - -

q2 1.15 1.0 1.0 2.0 1.0

Rousselier
model

D 1.4 2.0 -

σ1 [MPa] 451 260 -

Two test sample geometries were selected which allow for two-dimensional calculations:
• a smooth round bar and
• a plane strain or "Hill" specimens, see Fig. 3.

Fig. 3. Hill specimen: plane strain condition is reached in the centre strip



MSMF-3 Brno 2001

322 Materials Structure & Micromechanics of Fracture

RESULTS

Finite element simulations were performed using the FE codes ABAQUS and Zébulon. All
calculations except the studies on the effect of element type were performed using quadratic
(8 nodes) axisymmetric or plane strain elements with reduced integration (4 Gauss points). As
very similar results in terms of mesh dependence, occurence of localization and slant or cup-
cone fracture were obtained with both FE codes only some examples using one or the other
will be presented in the following. Results of the steel X70 HSLA are presented if not
indicated otherwise. No artificial imperfections meshes to promote localization have been
applied to the FE.

Mesh size and mesh design
Mesh size and mesh design play an important role in numerical simulations of damage and
fracture (Tvergaard and Needleman [3], Ruggieri  et al. [31]). The element height determines
the energy release rate (Xia et al. [9], Siegmund and Brocks [32]) and has to be adjusted to fit
experimental crack growth resistance data (Rousselier [5], Sun and Hönig [33], Brocks and
Steglich [34], Gullerud et al. [35). But beside the well known influence of the element height
a number of additional effects on the crack formation have been found, namely any imposed
symmetry of the mesh, the number of elements across the specimen section and the element
type. Little attention has been given to the latter though unit cell calculations by Brocks et al.
[36] have revealed a significant influence of the element type on the plastic collapse which is
the structural equivalence to void coalescence and determines the fc value in the GTN model.

Fig. 4. Mesh symmetry effect on load vs displacement curve and crack formation: Rousselier
model, FE-code Zébulon, quarter, half and full plane strain specimen, number of elements
over half specimen thickness 40, element aspect ratio 3.25; contours show damage at final
rupture; S0 = initial cross section, e0 = initial thickness.
Mesh symmetry effect. Taking full advantage of symmetries of the round bar or the Hill
specimen requires meshing of one quarter, only, which is usually adopted to reduce the
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number of degrees of freedom in the FE model. However, meshing of one quarter of the
specimen means that in the case of slant fracture two cracks forming a cross or in the case of
cup-cone fracture (Tvergaard and Needleman [3]) two cones are actually modelled. This leeds
to a higher value of dissipated energy. Fig. 4 shows the load vs reduction of thickness curves
and the crack formation obtained from simulations of one quarter, one half and full specimen
models. Failure is delayed in the case of the quarter model. The effect of imposed symmetry
becomes relevant at the sudden drop of the load, i.e. when a crack initiates in the centre of the
specimen.

Element size effect. The number of elements over the specimen cross section does not
significantly affect the load displacement curve until significant damage occurs and a micro-
crack has initiated in the specimen, which is indicated by the sudden drop of the load in the
final stage. Increasing the number of elements in the cross section of the specimen causes the
crack to grow faster and the load drop to become steeper, see Fig. 5. This is an effect of the
element height because this dimension is proportional to the dissipated energy per crack
growth increment (Ruggieri  et al. [31]). But as the aspect ratio has been kept constant (width
: height = 3.25 : 1) in these calculations, increasing number of elements means also
decreasing height. The number of elements affects the formation of the crack surface: a
minimum number is required to obtain slant (or cup-cone) fracture, see Fig. 6. As the
continuum mechanics description does not involve any length scale, this is definitely a
question of the number of elements and not of their absolute size.

Fig. 5. Element size effect on load vs reduction of thickness: Rousselier model, FE-code
Zébulon, plane strain specimen, number of elements over half specimen thickness 10, 20, 40,
80, element aspect ratio 3.25 : 1.
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Effect of element aspect ratio. The element height is proportional to the dissipated energy
during the fracture process whereas the element width is important to reproduce the gradients
of stress and strain fields adequately. For a given number of elements, i.e. fixed element
width, the element aspect ratio appeared to be of minor influence for the formation of slant
fracture in the plane strain specimen (Besson et al. [22]) but affects the rupture mode, cup-
cone or flat fracture, of round bars. Fig. 6 displays a matrix of the effects of element widths
and aspect ratios.

number of elements

aspect ratio

20 40 80

12 : 1

6: 1

3 : 1

Fig. 6. Effect of number of elements and element aspect ratio (width : height) on fracture
surface formation: Rousselier model, FE-code Zébulon, round bar; contours show damage at
final rupture.

Effect of element type. Applying linear (4 nodes) or quadratic (8 nodes) quadrilateral or
triangular elements affects the formation of cup-cone or flat fracture, see Fig. 7. Triangular
elements obviously promote deviation of the crack. Note, that Needleman and Tvergaard [4]
used quadrilaterals which were sub-divided onti four triangles in their investigation on cup-
cone fracture. The two simulations with linear elements displayed in the bottom row of Fig. 7
differ by the number of elements, namely 40 and 80, over the thickness. Again, a minimum
number of elements is required to obtain cup-cone fracture.
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Fig. 7. Effect of element formulation on fracture surface formation: Rousselier model, FE-
code Zébulon, round bar; contours show damage at final rupture.

Formation of fracture surfaces by the Gurson and the Rousselier model.
All the previous examples showed simulations with the Rousselier model. In general, slant or
cup-cone fracture is more easily obtained with the Rousselier than with the Gurson model,
which is due to the differences in the yield surfaces pointed out in Fig. 2: under shear loading
the Rousselier model predicts void growth whereas the Gurson model does not. Studying the
characteristics of the GTN model with respect to slant or cup-cone fracture is much more
complex, however, as it has a higher number of adjustable parameters which influence the
results. Three variants have been studied, namely
• Gurson's original yield function without nucleation and without the modified damage

function f*, denoted by G
• the modified version by Tvergaard and Needleman with accelerated damage by

introducing f* according to eq. (4), denoted by G*, and
• the modified version additionally accounting for void nucleation if f > fc according to eq.

(6), denoted by Gn.
The respective parameter sets are summarized in Table 1. The crack paths obtained in the FE
simulations are compared in Fig. 8. All models except G* predict slant fracture. Similar
results were obtained for cup-cone fracture of round bars. This result is somehow intriguing
as most of the simulations in the literature apply the GTN model with the f*-function of eq.
(4). The localization indicator of eq. (7) was used by Besson et al. [22] to interpret this effect;
just one example is presented below.
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Rousselier Gurson (G)

original version

Gurson (G*)

with f*-function

Gurson (Gn)

with nucleation

Fig. 8. Formation of crack surfaces by Rousselier's and Gurson's model: FE-code Zébulon,
plane strain specimen, number of elements over half specimen thickness 40, element aspect
ratio 3.5 : 1; contours show damage at final rupture.

The localization indicator, eq. (7), was implemented in the FE calculations to monitor the
bifurcation condition in any material point. Localization is defined as occuring when Iloc < 0
for the first time. Fig 9 shows the evolution of this quantity (top row) and of the porosity
(bottom row) in the necking section of the specimen for six successive load steps shortly
before and after failure indicated by the sudden drop of the applied load, as predicted by the
Rousselier model. The value of Iloc indicates three states,
• green (light grey): plastic deformation, Iloc > 0,
• yellow (medium grey): possible localization, Iloc ≤ 0.
• blue (dark grey): elastic unloading.
Highly damaged areas, i.e. high values of f, are indicated in red (black).

Localization indicator and porosity evolve as follows:
(1) Plastic necking of the cross section has proceeded and slightly increased porosity is

observed in the centre.
(2) A small circular area of possible localization spreads from the centre, damage in the

centre has further increased but still, no crack has initiated.
(3) Load starts to drop suddenly beyond this point. The area of possible localization has

developed a kidney (or butterfly wing) shape, and a crack has initiated in the centre.
Regions of elastic unloading are visible above and below the crack.

(4) Load further decreases, the crack starting from the centre starts bifurcating into ±45°
directions, but the area of possible localization has reduced to a narrow band in -45°
orientation. The regions of elastic unloading have increased.

(5) A principle crack has developed in the -45° orientation as indicated before by Iloc. The
band of possible localization approaches the specimen surface.

(6) The load is close to zero and the principle crack has nearly reached the specimen
surface. The major part of the specimen is elastically unloaded.
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1                    2                       3                       4                      5                       6

Fig. 9. Load vs reduction of thickness diagramme (A0 = initial cross section, ∆t = reduction of
thickness) and evolution of the localization indicator (top row) and damage (bottom row) for
six successive load steps shortly before and after failure: Rousselier model, FE-code Zébulon,
plane strain specimen, number of elements over half specimen thickness 40, element aspect
ratio 3.5 : 1.
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The G-model gives essentially similar results to the Rousselier model. An elongated zone of
possible localization, Iloc ≤ 0, exists ahead of the slanted crack in which the crack will further
propagate. In the case of the G*-model, however, this localization zone is much smaller and
eventually disappears. This is due to the sharp bend in the f*-function at fc, eq. (6), which
causes a spatial discontinuity of the localization indicator: localization may be possible at a
single Gauss point whereas the surrounding Gauss points remain in a state far from instability.
This inhibits the deviation of the crack from the flat fracture surface.

Influence of material properties
A systematic study of all possible effects of the various material parameters on the fracture
surface formation is practically impossible. The three materials investigated in the present
study, see Table 1, differed mainly by their initial void volume fraction, f0, that means by their
inclusion size and spacing. The matrix displayed in Fig. 10 gives some indication to the trends
which can be expected without claiming generality. Initial porosity increases from the bottom
to the top row. No cup-cone fracture could be obtained with the GTN model (in its
conventionally used version including f*) for any of the materials and no slant fracture for the
low porosity steel. Rousselier model predicted cup-cone or slant fracture, respectively, for any
of the materials, provided a sufficient number of elements over the specimen thickness, of
course. Gurson and Rousselier model differ by the predicted inclination angle of the slant
crack (Besson et al. [25])

Fig. 10. Formation of the fracture surface in round bars and plane strain specimens for
materials with different initial void volume fraction, f0, as predicted by the Gurson and the
Rousselier model.
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CONCLUSIONS

The formation of slant and cup-cone fracture in numerical simulations using the Gurson and
the Rousselier model has been analyzed. A localization idicator has been computed to detect
zones of possible localization of deformation and damage.

In order to model slant or cup-cone fracture, a minimum number of elements must be used to
discretize the cross section of the specimen. It was found that at least 15 elements over the
half thickness are required for both models. Below this limit the mesh is to coarse to capture
the localization zone. Other mesh design dependences are related to enforced symmetry
conditions, the element aspect ratio and the element formulation.

Slant or cup-cone fracture is generally more easily obtained with the Rousselier than with the
Gurson model, which is due to the differences in the respective yield surfaces. Applying the
f*-function in the GTN may inhibit slant fractureas the localization zone cannot extend
sufficiently so that the crack surface remains flat. Slanted fracture can also be obtained with
the void nucleation option. Similar conclusions were drawn from the study of cup-cone
fracture by Besson et al. [25].

The inclination angle of the crack is smaller in cup-cone fracture of a round bar than in slant
fracture of a plane strain specimen, and Gurson and Rousselier model differ by the predicted
inclination angle of the slant crack
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