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ABSTRACT

Mori-Tanaka's approach [1] is used to modellingmetal particulate-reinforced brittle matrix

composites under cyclic compressive loading. The J2�
ow theory is considered as the

relevant physical law of plastic 
ow in inclusions. A strong constraint exerted by matrix

on inclusions causes that even the evanescent kinematical hardening rule does not predict

any ratchetting of a composite. It is shown that the weakening constraint of the matrix

caused by microfracture damage around inclusions is closely coupled with the plasticity

of inclusion and leads to ratchetting even when the plastic deformation of inclusions

is described by an isotropic hardening rule. A detailed parametric study has revealed

that ratchetting is followed by either plastic or elastic shakedown, depending on the load

amplitude, composite parameters and the mean microcracks length.
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INTRODUCTION

Brittle solids fail in compression by a process of progressive microfracture. If subjected

to cyclic loading beyond the elastic range with nonzero mean stress, usually there is a

cycle by cycle accumulation of inelastic strain related to microfracturing in the direction

of mean stress similarly like an accumulation of plastic strain in steels or other metals.

This phenomenon is called cyclic creep or ratchetting. In cyclic plasticity of ductile mate-

rials there are several models capable to describe ratchetting, among others Armstrong-

Frederick (AF) model [2], Chaboche [3], Ohno [4] and/or Jiang model [5]. AF model,

however, in most situations, overpredicts ratchetting. With brittle matrix reinforced by

ductile inclusions is a problem of constitutive modeling even more complicated. In ceramic

matrix, for example, the nature and number of slip systems available for deformation in

brittle matrix does not usually allow for macroscopic plastic strains; however, it should

be recognized that microcracking in matrix per se causes signi�cant internal displacement

and can enable permanent macroscopic strains which have to be added to permanent

strains exhibited by ductile inclusions. Further complication stems from the fact that

brittle materials are used primarily in circumstances when the compressive stresses are

prevalent and the tensile stresses are very small if not absent. Microcracking in these ma-

terials depends on the weak spots in the material and the localized stress concentrations

at microstructural heterogeneities.
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CONSTITUTIVE MODELLING

Summary of basic relations

Assume a representative volume element (RVE) of material. A surface traction, giving

rise to an uniform stress �ij, is prescribed to the boundary of the RVE. Following an

approach proposed by Tandon and Weng [6] we consider an auxiliary problem of an

identically shaped comparison material element with the property of the matrix subjected

to the same traction. Consider �rst the case of the RVE without microcracks. The stress

and strain in the comparison material, �ij and "0ij respectively, are related in the rate

formulation by
:
�ij= L0

ijkl

:
"
0

kl; (1)

where L0
ijkl =

�
�0 � 2

3
�0
�
ÆklÆij + �0 (ÆikÆjl + ÆjkÆil) ; where �0, �0 are shear modulus and

bulk modulus of the matrix. ( The following symbolic notation will be used: Greek

letters denote the 2nd-rank tensors, and ordinary capital letters denote the 4-th-rank

ones. The inner product of 2 tensors is written such that � : " = �ij"ij; L : " = Lijkl"kl;
L : A = LijklAklmn; and L :: A = LijklAijkl in terms of the indicial components.) The

stress and strain rates in Eq. (1) represent the average stress and strain rates of the

matrix when it contains only a single inclusion. At �nite concentration the average stress

and strain rates of the matrix di�er from these by
:e� and

:e" respectively, and are connected

by
:
� +

:e�= L0 :
�
:
"
0
+

:e"� : (2)

The stress rate in the inclusion
:
�
(in)

further di�ers from the mean of the matrix by a

perturbed value
:
�
(pt)

: The strain rate in the inclusion di�ers by a perturbed value
:
"
(pt)

.

A part of
:
"
(pt)

is due to the actual plastic deformation rate
:
"
p
which is de�ned through the

relevant physical laws of plastic 
ow. The remaining part of
:
"
(pt)

in the inclusion, on the

other hand, is due to eigenstrains rate
:
"
�
which is introduced in order to homogenize the

solid. From Eshelby's equivalence principle one has

:
�
(in)

=
:
� +

:e� +
:
�
(pt)

= L1 :

� :

"0 +
:e" + :

"
(pt) �

:
"
p
�
= L0 :

�
:
"
0
+

:e" + :
"
(pt) �

:
"
p �

:
"
�
�
; (3)

where L1 is elastic moduli tensor of the inclusion. Eshelby's solution readily renders the

relation
:
"
(pt)

= S :
�
:
"
p
+

:
"
�
�
; (4)

where S is the Eshelby tensor whose components, in the present case, depend only on

the Poisson's ratio �0 of the matrix. Since the volume average of the mean stress in the

matrix and the inclusions must be in balance with �; we have

:e�= �c
:
�
(pt)

; (5)

where c is the volume fraction of inclusions. In view of (2) it follows from (3)

:
�
(pt)

= L0 :
�
:
"
(pt) �

:
"
p �

:
"
�
�
: (6)

Since
:e�= L0

:

: e" we get from (4),(5),(6)

:e"= �c (S � I) :
�
:
"
p
+

:
"
�
�
; (7)
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where I is the 4th-rank identity tensor. Substituting (4) and (7) into (3) one obtains the

equation

L1 :

� :

"0 +(1� c)S :
�
:
"
�
+

:
"
p
�
+ c

�
:
"
�
+

:
"
p
�
�

:
"
p
�
= L0 :

� :

"0 +(1� c) (S � I) :
�
:
"
�
+

:
"
p
��

;

(8)

which can be solved for
:
"
�
.

Extension of the model to microcracked composites

Let the x1 axis coincides with the principal direction of highest applied (in the sense of

the absolute value) compressive stress �11. The x1 axis de�nes the polar axis of spherical

inclusions. The stresses are then concentrated by inclusions under multiaxial compressive

loading such that, the hoop stresses along the interface at inclusion's north and south

poles are most tensile ones. Consider now the case when microcracks are nucleated in

the matrix from the matrix-inclusion interface at their north and south poles due to this

local concentrated tensile �eld. Each inclusion gives rise to a pair of microcrack, see Fig.

1. The additional average strain rate of matrix
:
"
MC

due to microcracks is given by

:
"
MC

ij =
1

V

Z
@
+

1

2
(ni [

:
uj] + [

:
ui]nj) dS = Hijkl

:
�kl; (9)

Fig. 1. Tensile stress and microcracks inception at the inclusion's poles

where the constant tensor Hijkl is de�ned through (9), ni is the exterior unit normal of

@
+ which denotes the union of all crack "upper" surfaces, [
:
uj] is the microcrack-opening-

displacement rate and V is the volume of RVE, see for details e.g. Nemat-Nasser and

Hori [7]. (Note that microcracks are assumed not to change their size.) Apparently, all

microcracks are parallel to the x1 axis. If the lateral principal pressures �22 and �33 are of

the same magnitude, then the distribution of the unit normals of microcracks is random

in the x2; x3-plane and, due to the symmetry in the x2; x3-plane, the overall response of

the RVE is transversely isotropic, with the x1 axis being the axis of symmetry. Assume

that all microcracks are approximated by penny-shaped microcracks with the same radius
l
2
. The distribution of the microcracks is assumed to be dilute. Let (x�1 ; x

�
2 ; x

�
3 ) be the

local rectangular Cartesian coordinate system for a pair of microcracks 
� with x�1 axis

being identical with the x1 axis of the global coordinate system, see Fig. 1. The unit

base vectors are
�!
e�i (i = 1; 2; 3) and the origin O� is at the centre of the inclusion. The

Materials Structure & Micromechanics of Fracture 357



MSMF{3 Brno 2001

pair of microcracks 
� lies in the x�1 ; x
�
2 -plane and the unit normal �!n

�
� �!
e�3

�
is in the x�3

direction. The contribution to the additional average strain rate by a pair of microcrack


� ,
:
"
�
, is de�ned by

:
"
�

ij=
1�
l
2

�3 Z
@
+

�

(ni [
:
uj] + [

:
ui]nj) dS = H�

ijkl

:
�kl; (10)

where the components of the constant tensor, H�
ijkl, are expressed in the local ��coordi-

nates. The additional average strain rate of matrix
:
"
MC

can be expressed as

:
"
MC

=
f

2�

2�Z
0

:
"
�

ij

�!
e�i (�)


�!
e�j (�) d�; (11)

where f is the crack density parameter f = N
�
l
2

�3
with N denoting the total number of

pairs of microcracks per unit volume and
�!
e�i (�) and are the local base vectors. N relates

to the inclusion's concentration c and inclusion's radius R by

N =
3c

4�R3
:

The solution to the microfractured matrix-inclusions system is the superposition of two

problems: i) matrix with the additional strain rate
:
"
MC

, ii) matrix + inclusions with

the rate of eigenstrain
:
"
�
which is introduced in order to homogenize the solid, and

the rate of stress-free inelastic transformation strain
:
"
p �

:
"
�
, where

:
"
p
results from the

plastic deformation of inclusions. Let us follow the solution to the problem ii). Eshelby's

equivalence principle (3) becomes:

:
�
(in)

=
:
� +

:e� +
:
�
(pt)

= L1 :

� :

"0 +
:e" + :

"
(pt) �

�
:
"
p �

:
"
���

=

= L0 :
�
:
"
0
+

:e" + :
"
(pt) �

:
"
� �

�
:
"
p �

:
"
���

: (12)

Eshelby's solution provides the relation

:
"
(pt)

= S :
�
:
"
�
+

:
"
p �

:
"
�
�

(13)

and, in a similar manner to Eq. (7) we arrive at

:e"= �c (S � I) :
�
:
"
�
+

:
"
p �

:
"
��
: (14)

Substituting (13) and (14) into (12) one gets the equation

L1 :

� :

"0 +(1� c)S :
�
:
"
�
+

:
"
p �

:
"
�
�
+ c

�
:
"
�
+

:
"
p �

:
"
�
�
�
�
:
"
p �

:
"
�
��

=

= L0 :

� :

"0 +(1� c) (S � I) :
�
:
"
�
+

:
"
p �

:
"
���

; (15)

which can again be solved for
:
"
�
. For further analysis it is convenient to decompose

isotropic 4-th-rank tensors L1 , L0 and S into hydrostatic and deviatoric parts as

L1 = (3�1; 2�1) ; L
0 = (3�0; 2�0) ; S = (�0; �0) ; (16)
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with �0 =
1
3
1+�0
1��0

; �0 =
2
15

4�5�0
1��0

.

The hydrostatic part of stress rate inside the inclusion then becomes

:
�
(in)
kk =

:
�kk

"
1�

(1� c) (1� �0)

(1� c) (1� �0) +
�1

�0��1

#
+

3�0�1
�0��1

(1� c) (1� �0)
:
"
�

kk

(1� c) (1� �0) +
�1

�0��1

(17)

and the deviatoric part of the stress rate

:
�
0(in)
ij =

:
�
0

ij

241� (1� c) (1� �0)

(1� c) (1� �0) +
�1

�0��1

35� 2�1�0
�0��1

(1� c) (1� �0)
�
:
e
p
ij �

:

e�ij

�
(1� c) (1� �0) +

�1
�0��1

: (18)

It is assumed that the relevant physical law of plastic 
ow in the inclusions is the J2�
ow
theory de�ned by

f =
3

2
�
0(in)
ij �

0(in)
ij � k2 (
) ; (19)

where �
0(in)
ij follows from Eq. (18), k (
) stands for the radius of the yield surface and

represents the isotropic hardening of inclusions with 
 =
q

2
3
e
p
ije

p
ij being the e�ective

plastic strain. (Note that the residual stresses due to the adjacent brittle matrix are auto-

matically introduced via the composite model.) It may prove advantageous to specialize

the evolution of k (
) by means of an equation similar to that employed for kinematic

hardening as suggested by Lemaitre and Chaboche [3] dk
d


= b (Q� k) ; where b and Q

are two constants. Q is the asymptotic value which corresponds to a regime of stabilized

cycles, and b indicates the speed of the stabilization. This evolution law is quite a good

representation of the cyclic hardening e�ects. Assuming the normality rule, the plastic

strain rate is de�ned as

:
e
p
ij= �

@f

@�
0(in)
ij

=

8<: 3
2

�
0(in)

ij
�
0(in)

kl

:

�
0(in)

kl

k2h
; for f = 0 and �

0(in)
kl

:
�
0(in)
kl � 0

0; for f < 0 or �0
(in)

kl

:
�
0(in)
kl < 0

9=; (20)

where h = dk
d

:

The overall strain rate
:
" is given by the weighted average of its constituents coupled with

averaging over the orientations of local coordinate system and by the superposition of the

problems i) and ii); in the global coordinate system this leads to

:
"kk =

:
"
0

kk +
:
"
MC

kk +c

:
"
0

kk �
�1

�0��1

:
"
�

kk

(1� c) (1� �0) +
�1

�0��1

;

:
eij =

:
e
0

ij +
:
e
MC

ij +c

:
e
0

ij

(1� c) (1� �0) +
�1

�0��1

+ c

�1
�0��1

�
:
e
p
ij �

:
e
�

ij

�
1
2�

2�R
0

�!
e�i (�)


�!
e�j (�) d�

(1� c) (1� �0) +
�1

�0��1

:

(21)

If microcracks were absent (i.e.
:
"
�
�0), then one could readily integrate Eqs. (18),

(20) and (21). Consider the case of uniaxial loading �11 6= 0; �ij = 0 for i 6= 1; j 6= 1:

Hence, the nonzero deviatoric parts of �ij follow as �011 =
2
3
�11; �

0

22 = �033 = �1
3
�11: The

average strain rate component
:
"11 follows from (21) as

:
"11 =

:
�11

9�0

"
1 +

c

(1� c) (1� �0) +
�1

�0��1

#
+

:
�11

3�0

241 + c

(1� c) (1� �0) +
�1

�0��1

35 +
+

c�1
:
e
p
11

(1� c) (1� �0) (�0 � �1) + �1
: (22)
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Eqs. (22), (20) and (18) were numerically integrated using the Runge-Kutta method of

5th order. The elastic constants of constituents were taken as follows: �0 = 300 GPa;

�1 = 84 GPa; �0 = 400 GPa; �1 = 200 GPa which correspond to cermet WC-Co. The

volume fraction of Co inclusions c = 0:2. The ratio of the compression amplitude j�11mj
to the initial radius of the yield surface k (0) ful�lled the necessary condition for the

occurrence of the ratchetting e�ect

j�11mj
k (0)

>
2

1� (1�c)(1��0)

(1�c)(1��0)+
�1

�0��1

; (23)

i.e. the stress range is more than double of the initial radius of the overall yield surface

of composite solid. The constants from the cyclic hardening rule Q and b ranged as

follows: Q

k(0)
� 1 2 h0:08; 0:20i, b 2 h10; 60i; however, no signi�cant in
uence upon the

overall stress-strain curves was observed. The predicted overall stress-strain curves have

not shown any ratchetting. An accumulation of the overall plastic strain due to nonzero

mean stress occurs only in the very �rst cycle, in the next cycles a perfect plastic or elastic

shakedown follows and cyclic deformation is purely elastic. It should be noted that almost

the same response results when, in addition, the kinematic hardening in the inclusion is

considered. The yield function of the J2�
ow theory is then de�ned by

f =
3

2

�
�
0(in)
ij � Rij

� �
�
0(in)
ij �Rij

�
� k2 (
) ; (24)

where Rij indicates the translation of the yield surface and physically represents the back

stress acting on pinned or piled-up dislocations and evolves according to the Armstrong

and Frederick's [1] translation rule

:

Rij= K
:
e
p
ij �KeRij

:

; (25)

where the second term (called the dynamic recovery) describes the evanescence of the

strain memory as well as the strain hardening, K and Ke are material parameters, see

[2] or [3]. It is well-known that the AF model overpredicts ratchetting in most situation

because the dynamic recovery term is too active. In our computations the material pa-

rameters K and Ke were changed in a wide range, however no ratchetting was predicted.

This is due to a strong plastic constraint exerted by matrix on inclusions.

It will be shown in the next that microcracks emanating from the poles of a inclusion, see

Fig. 1, can promote ratchetting of composite. However, the system of preceding equa-

tions is not suÆcient to calculate this response. To complete the formulation, we must

relate the strain rate
:
"
�
to the eigenstrain rate

:
"
�
; to the plastic strain rate

:
e
p
and to the

applied stress rate
:
�. We shall do this by calculating the approximative opening stress

intensity factor, KI , at the tips of the pair of 
at microcracks emanating from the poles

of a spherical inclusion in two di�erent ways: (1) by expressing the local stress �eld of the

inclusion and the Green's function for a microcrack embedded in this stress �eld, and (2)

by calculating the stress intensity factor associated with the gap of the microcrack faces

at the matrix/inclusion interface (so called dislocated crack) �PC , see Fig. 1.

Ad 1. For simplicity we assume only simple compression acting in the direction of x1
axis of the global coordinate system which, as it was already speci�ed, coincides with x�1
axis of a local coordinate system. The stresses are concentrated by the inclusion under
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simple compression such that, the hoop stresses along the interface at inclusion's north

and south poles are tensile. For an unbounded solid one can calculate the stresses outside

the inclusion using the Eshelby tensor �eld S1

ijkl (
�!r ; 
) [8], where �!r denotes the radius

vector of the point in the matrix and 
 denotes the inclusion. The stress intensity factor

KI for a pairof 
at cracks emanating from the poles of a spherical inclusion can be found

by using a similar approximative method already applied to a spherical hole by Sammis

and Ashby [9]. Approximative stress intensities can be found from the Green's function

for a crack embedded in the stress �eld of the inclusion. In doing this the integral over

the face of the microcrack is approximated by an integral along the line of the maximum

tensile stress,

KI =

s
R

�L

LZ
�L

L0
33ijS

1

ijkl (
�!r ; 
) ("�kl + "

p
kl � Æk3Æl3"

�
33)

�
L +X

L�X

�1=2
dX; (26)

because the stresses are so sharply peaked near the poles of the inclusion that other ge-

ometric considerations are of minor importance. L in Eq. (26) denotes the normalized

crack length L = l
R
.

Ad 2. The Mode I stress intensity factor associated with the gap of the microcrack faces

at the matrix/inclusion interface (there is no contribution from the applied stresses under

simple compression acting in the direction of x�1 ) is estimated by [10]

K 0

I (�PC) =
1

2

�0

1� �0

�PCp
�l
: (27)

�PC can be related to the additional strain of the inclusion �"PC33 generated by microcracks

�"PC33 = "PC33 ("�33 6= 0)� "PC33 ("�33 = 0) ; (28)

where

"PC33 = "033 + e"33 + "
(pt)
33 + "�33 (29)

is the component of the total strain of the inclusion in the x�3 direction. For �"PC33 it

follows

�"PC33 = "�33 �
1

3
[�0 (1� c) + c]

�1
�0��1

"�33

(1� c) (1� �0) +
�1

�0��1

+

+ [�0 (1� c) + c]

�1
�0��1

h
e
p
33 ("

�
33 6= 0)�ep33 ("�33 = 0)� 2

3
"�33

i
(1� c) (1� �0) +

�1
�0��1

; (30)

where to the order of O ("�33)is

e
p
33 ("

�
33 6= 0)�ep33 ("

�
33 = 0)�

2

3
"�33 � 0:

The additional strain of the inclusion �"PC33 and the gap of the microcrack faces at the

matrix/inclusion interface �PC can be related under the assumption that the gap �PC is

constant across the inclusion by modifying Eq. (10)

�"PC33 =
1

R3

Z
S

�PCdS =
�

R
�PC ; (31)
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where R stands for the inclusion's radius and S denotes the inclusion's cross-section.

Hence

�PC =
R

�
"�33

8<:1� [�0 (1� c) + c] �1
�0��1

3
h
(1� c) (1� �0) +

�1
�0��1

i
9=; : (32)

To obtain a relation between the strain rate
:
"
�
on the one side and the eigenstrain rate

:
"
�
, the plastic strain rate

:
e
p
and the applied stress rate

:
� on the other side, we require

KI = K 0

I : (33)

By time di�erentiation of (33) and substituting for
:
"
�

kk,
:
e
�

11 +
:
e
p
11 and

:
e
�

33 +
:
e
p
33 a required

relation for
:
"
�

33 is obtained:

:
"
�

33=
1

d4

�
d1

:
e
p
11 +d2

:
e
p
33 +d3

:
�11

�
; (34)

where

d1 = d1 (�0; �0; c; L) ; d2 = d2 (�0; �0; c; L) ;

d3 = d3 (�0; �0; c; L) ; d4 = d4 (�0; �0; c; L)

are complicated functions of the elastic constants of the matrix, of the volume fraction of

inclusions c and of the relative microcrack length L.

NUMERICAL RESULTS AND DISCUSSION

As already noted, in the case of uniaxial loading �11 6= 0 the only nonzero component of

"�kl is "
�
33. One can then easily prove using Eq. (11) that

:
"
MC

11 = 0: The overall strain rate

component
:
"11 follows from (21) as

a) b)

Fig. 2. Predicted overall stress-strain curves for the �rst N = 100 cycles, microcracking

present in the matrix: a) b = 10; Q=k (0)� 1 = 0:08, j�11mj =k (0) = 3:7; L = 3, b)

b = 10; Q=k (0)� 1 = 0:13, j�11mj =k (0) = 3:2; L = 3.

:
"11=

:
�11

9�0

"
1 +

c

(1� c) (1� �0) +
�1

�0��1

#
+
1

3

c �1
�0��1

:
"
�

33

(1� c) (1� �0) +
�1

�0��1

+

+

:
�11

3�0

241 + c

(1� c) (1� �0) +
�1

�0��1

35+ c�1
�
:
e
p
11 �

:
e
�

11

�
(1� c) (1� �0) (�0 � �1) + �1

: (35)
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Eqs. (35), (34), (20) and (18) were numerically integrated using the Runge-Kutta method

of 5th order to obtain the uniaxial stress-strain curves under cyclic loading. The elastic

constants of constituents were taken as formerly: �0 = 300 GPa; �1 = 84 GPa; �0 = 400

GPa; �1 = 200 GPa . Also the same values of the volume fraction of inclusions, the ratio

of the compression amplitude to the initial radius of the yield surface and the constants

from the cyclic hardening rule were used as in the previous computations related to the

case without microcracking. The normalized crack length L = l
R
was considered from

the interval h1; 3i. Two of the predicted overall stress-strain curves are shown in Fig. 2.

Contrary to the results of the computations related to no microcracking a strong in
uence

of the parameters
j�11mj

k(0)
, Q
k(0)

�1, b and L on the overall stress-strain curves was observed.

Fig. 3. Accumulation of the permanent mean Fig. 4. Accumulation of the permanent

overall strain "11. b=10, Q=k (0) -1=0.08, mean overall strain "11. Q=k (0) -1=0.08,

j�11mj /k (0)=3.7. j�11mj =k (0)=3.6, L=1:

Figs. 3-5 illustrate an e�ect of these parameters upon the accumulation of a mean overall

strain in each cycle. It is seen that these parameters signi�cantly a�ect both the length

of the period of a pronounced ratchetting and the value of the accumulated overall strain.

Note a peculiar in
uence of the parameter Q
k(0)

� 1 upon the value of the accumulated

mean overall strain. Fig. 5 shows that an increase of Q
k(0)

� 1 (i.e. a relative increase

of the asymptotic value of k (
) with respect to the initial one) may sometimes result

in an increasing and sometimes in a decreasing value of the accumulated overall strain

depending on the values of other parameters.

a) b)

Fig. 5. Accumulation of the permanent mean overall strain "11. a) b = 10,

j�11mj =k (0) = 3:84, L = 1, b) b = 40, j�11mj =k (0) = 3:7, L = 1.

The explanation of this phenomenon is postponed to the �nal part of this section. Figs.

3-5 indicate that the ratchetting is followed by an almost perfect plastic or elastic shake-

down which will be also discussed later on.
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This is matter of interest to make clear why the developed model can describe ratchetting

e�ects even though the plastic 
ow within inclusions is described by the isotropic hard-

ening rule (20). To this end, substitute (18) into (20), make use of Eq. (34) and, within

the uniaxial loading context, obtain after solving for
:
e
p
11;

:
e
p
22 and

:
e
p
33:

:
e
p
11 =

3

2

�
0(in)
11

:
�11

�
A�

0(in)
11 +B d3

d4
�
0(in)
33

�
k2hef

;

:
e
p
22 =

3

2

�
0(in)
22

:
�11

�
A�

0(in)
11 +B d3

d4
�
0(in)
33

�
k2hef

;

:
e
p
33 =

3

2

�
0(in)
33

:
�11

�
A�

0(in)
11 +B d3

d4
�
0(in)
33

�
k2hef

; (36)

where

A = 1�
(1� c) (1� �0)

(1� c) (1� �0) +
�1

�0��1

; B =

2�1�0
�0��1

(1� c) (1� �0)

(1� c) (1� �0) +
�1

�0��1

and

hef =
dk

d

+B �

3

2

B

k2

 
d1

d4
�
0(in)
11 �

0(in)
33 +

d2

d4

�
�
0(in)
33

�2!
(37)

a) b)

c)

Fig. 6. Evolution of the deviatoric stress component inside inclusions �
0(in)
33 . a) b = 40;

Q=k (0)� 1 = 0:08, j�11mj =k (0) = 3:7; L = 1, b) b = 40, Q=k (0)� 1 = 0:08,

j�11mj =k (0) = 3:6, L = 1, c) b = 10, Q=k (0)� 1 = 0:08, j�11mj =k (0) = 3:84, L = 1.

is the e�ective hardening modulus. Note that d2
d4
> 0; d1

d4
> 0 while d2

d4
� d1

d4
. The hardening

modulus in (37) has a similar mathematical structure as the hardening modulus in the

classical model of plastic 
ow with nonlinear kinematic hardening which evolves according
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to the (AF) translation rule (25). Let k1 is the point in overall stress space where yielding

of inclusions initiates prior to approaching the bound �11m in compression. Similarly, k2
is the corresponding point on the unloading path for the onset of yield prior to reaching

the zero load. The value of the e�ective hardening modulus hef changes between k1 and

�11m and between k2 and 0 according to the changes of the values the deviatoric stress

components inside the inclusion �
0(in)
11 and �

0(in)
33 . Since the values of �

0(in)
11 and �

0(in)
33 are of

the same order and since d2
d4
� d1

d4
, it follows that the component �

0(in)
33 is dominant one.

Therefore, if the absolute value of the deviatoric stress component
����0(in)33

��� on the loading

path hk1; �11mi is higher than that for the unloading path hk2; 0i, then the hardening

modulus hef is smaller

a) b)

c)

Fig. 7. Evolution of the e�ective hardening modulus hef a) b = 40; Q=k (0)� 1 = 0:08,

j�11mj =k (0) = 3:7; L = 1, b) b = 40, Q=k (0)� 1 = 0:08, j�11mj =k (0) = 3:6, L = 1, c)

b = 10, Q=k (0)� 1 = 0:08, j�11mj =k (0) = 3:84, L = 1.

for the stress states lying on the loading path than for the unloading path. The cyclic

loops, therefore, are not closed and they progressively shift in the direction of the negative

overall strain axis. If with the continued shift the value of
����0(in)33

��� decreases on the loading

path hk1; �11mi and increases on the unloading path hk2; 0i then the e�ective hardening

modulus on the loading path increases and for the unloading path decreases cycle by cycle.

In the end, the hardening moduli become either equal and the loops become stabilized

(plastic shakedown), or the elastic shakedown takes place and the cyclic deformation is

purely elastic. Fig. 6 shows the evolution of �
0(in)
33 at the compression load bound �11m and

the residual stress component �
0(in)
33 at the zero load during cycling for several combina-

tions of the parameters j�11mj

k(0)
, Q
k(0)

�1, b and L: Apparently, two distinctive regimes occur:

after some transient period the values of �
0(in)
33 stabilizes reaching at the compression bound
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and at the zero load either the same absolute value or di�erent absolute values. Fig. 7

shows the evolution of the corresponding e�ective hardening moduli during cycling. It is

seen that the e�ective hardening moduli become either equal and the plastic shakedown

results, or they reach di�erent saturated values. The saturated values of the hardening

moduli in the latter case are only �ctitious ones because the cyclic deformation is here

purely elastic and the hardening modulus thus loses its meaning. Hence, the saturation

is just an indicator of elastic shakedown.

a) b)

Fig. 8. Evolution of the e�ective hardening modulus hef a) b = 10, Q=k (0)� 1 = 0:16,

j�11mj =k (0) = 3:84, L = 1, b) b = 40; Q=k (0)� 1 = 0:19, j�11mj =k (0) = 3:7; L = 1.

In the light of the preceding discussion we can explain the results displayed in Fig. 5 in

the following way: an increase of Q
k(0)

� 1 generally delays the regime of stabilized cycles,

because attaining a higher asymptotic value Q with respect to k (0) requires to reach

higher plastic strains. As a results, the plastic shakedown either delays, compare Figs. 7c

and 8a, or, prior to the plastic shakedown could take place, the elastic shakedown occurs,

compare Figs. 7a and 8b. In the former case the accumulation of the mean overall strain

is promoted, see Fig. 5a, while in the latter case it stops evolving, see Fig. 5b.

For comparison, a �nite element analysis of the investigated problem has been attempted

and results are shown in an accompanying paper in the proceedings [11].
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