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ABSTRACT

Within the textural fractography of fatigue failures, the correspondence between the velocity
of crack growth and the texture in images of crack surface is investigated. A Gibbs random
field (GRF) model considering pairwise interaction was used to describe the texture. The
structure of the model and the process of estimating its parameters (potential) are described. A
multilinear regression was proposed for relating parameters of GRF to the crack velocity. The
theory was applied on results of four fatigue experiments in specimens from stainless steel
AISI 304L used in nuclear power industry. The theory of GRF has been proved to be a
powerful instrument for the textural fractography.

KEYWORDS

fractography, fatigue, image, texture, Gibbs random field, stochastic relaxation

NOMENCLATURE
Gibbs random fields
GRF Gibbs random field
IRF independent random field
xeX, x, image, training image
r=1,...M, c=1,....N indexing pixels of an image
x(r,c)=u, ue{0,1,...,n,-1}=U gray level in a pixel
n, number of gray levels
d=u;-u, de{-(ns-1),...,n,-1}=D interaction of gray levels in a pair of pixels
ny number of interaction levels
w search window
[ijle W clique, set of pixel pairs satistfying r-r= i, ci;-c,=j
Pij relative size of the clique [i,/]
h(x) = {h;;ad(x)} gray level co-occurrence histogram of image x
Six) = {fija(x)} relative frequency of interactions of image x
V=1_Via} potential
H(x) Hamiltonian of image x
LV, x) log-likelihood function of potential V at image x
e={e;} relative energy of the clique [i,/]
Fatigue

CGR =v [um/cycle], y =logio(v) velocity of crack growth (crack growth rate)
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INTRODUCTION

The quantitative microfractography of fatigue failures is concerned especially with the
reconstitution of the history of a fatigue crack growth process. Within laboratory tests,
specimens of the material are loaded under service conditions whereas the crack growth
process is recorded. Fracture surfaces are documented by SEM and images are studied to
relate some information present in the morphology of the crack surface to the macroscopic
crack velocity (crack growth rate - CGR). So a basis is obtained on which an unknown CGR
can be estimated from fracture surfaces of real parts. Finally, the crack growth process is
reconstituted using integration of CGR along the crack growth direction.

The traditional method is based on fractographic features - strictly defined measurable objects
in the morphology of the fracture surface. For the case of fatigue, a typical feature is
striations, fine parallel grooves in the fracture surface. The method cannot be used when
striations are not visible, typically due to corrosion.

As an alternative, the textural method has been developed in our department since about 1990.
A texture in image sense is a random structure of similar elements with some kind of
ordering. In many cases, structures in images of fracture surfaces can be studied as image
textures. The main problem in fractography consists in the continuous brightness scale and
absence of distinct borders of textural elements.

For the application of the textural method, especially suitable is the mezoscopic dimensional
area with SEM magnifications between macro- and microfractography (about 30 + 500 x).
These magnifications were not used very much in the past for the absence of measurable
objects in images. A particular setting of the magnification is limited by several conditions
related to individual images, to the whole set of images and to image discretization. Images
must be pre-processed [3] to obtain a homogeneous texture which is proper for the analysis.

In the textural method, fractographic information is extracted in the form of integral
parameters of the whole image. Several routine analytical procedures have been developed
within two general approaches:

e computing statistical parameters directly from gray-scale images,
e extraction of textural elements followed by the application of binary random field models.

Within the first approach, correlation and spectral parameters [2] have been used till now. In
the present contribution, modelling the texture as a Gibbs random field will be applied.

THEORY

Model of a random field [1]
In our narrowed sense, random field will be a population X of images x of the size M x N,

with joined probabilities Pr(x)

VxeX Pr(x)>0, Y Pr(x)=1 . (1)

xeX

A general model of an image random field can be characterized by properties of selected sets
of pixels, refered to as cliques. In the present application, the structure will be determined by

- brightness level in single pixels,

- arelationship between brightness of two pixels, denoted as pairwise interaction.
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It means single pixels and pairs of pixels with a general mutual position are taken for cliques.

A presumption simplifying significantly the model is that the texture is homogeneous. It is a
generalization of the property of homogeneity of one-dimensional random sequences. The
texture may be anisotropic, but properties along a given direction are not dependent on the
localization within the image. In a homogeneous texture, all pairs of pixels having an identical
relative position are equivalent. Therefore, pair cliques will be defined by the differences of
indices, i =r;- r,, j = c1- ¢z, and will be denoted as [ij]. Cliques can be represented by a
search window W. Fig.1 illustrates assigning pairs of pixels into W. Single pixels create a
special clique characterized by the distance vector [0,0].

30020 - 0 1 2
Fig.1: Organizing pairs of pixels (a) into a search window (b). The center [0,0]
represents the clique of single pixels.

The whole search window contains each clique twice as [i,j] and [-i,-/], through two elements
placed in the search window symmetrically to the center. Therefore we use only one half of it,
the other being shaded.

Because a digital image is of a finite size, different cliques have different cardinalities. Clique
[7, j/]€e W in an image of size M XN contains (M-|i|)-(N-|j|) pairs. Then relative size of a clique

pijis

_ (MINAD

Pij MN .
In general, the search window W involves all cliques that can be taken into account within the
image. However, when the texture does not contain a deterministically periodic component,
the significance of cliques decreases with an increasing distance of both pixels within the pair.
In terms of the search window W, the significance decreases with an increasing distance from
the center. Therefore the search window W can be reduced to the central part containing the
set of significant cliques.

2

Let us denote u=0,1,...,n,~-1 gray levels of single pixels, n, the number of gray levels within
the given scale and U the set of them. Similarly, d = d(u;, uy) will be the interaction of two
pixels with gray levels u; and u, n,; the number of all possible interactions and D the set of
interactions. In the simpliest variant of the model, interactions are defined by the difference
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between gray levels in the two pixels of a pair. They can be denoted by index d = u; - u,
acquiring values of d = -(n,-1),...,n,~-1. The number of possible interactions is n; = 2n,-1.

For clique [0,0] of single pixels, index d = u equal to gray level is to be used. In the following
text, this case will be understood as a unitary interaction of a pixel with itself, and will be
included among all interactions de D.

The information about numbers of gray level combinations in cliques is given by a gray level
co-occurrence histogram, which will be represented by a three-dimensional array h. 4;; 4 is the
number of gray level combinations de D in a clique [i, j]e W. In formal relations all the three
indices are defined by their natural values including negative ones, while for computational
implementation their ranges have to be shifted. For single pixel clique [0, 0] € W only n,<ny
values of & are present in the third dimension, the remaining values being defined by zeros.

The algorithm for creating histogram A consists in moving search window W pixelwise
through the image. In every position, for all combinations of indices [i,j] pairs of pixels are
selected according to the searching rule. For every pair, the combination of gray levels in both
pixels is recomputed to interaction d, and the value 4;;, increased by one.

Later we will also need relative frequency of interactions f which is defined
hi,j,d
(M—i)(N=[/])

fija 1s an estimate of apriori probability of occurrence of an interaction d in a clique [, j]. The
pertinence of quantities to an image x will be denoted as A(x), f(x), etc.

Jija = 3)

Gibbs probability distribution

A Gibbs random field (GRF) [1] is a model which originated in statistical physics. It describes
equilibrium probability distributions of large systems of interacting particles. While physical
interactions are based on physical forces, in our case we know only interactions between two
pixels, defined by conditional probabilities of gray levels. In the image analysis, terms
interaction and energy are used as an analogy.

Energy is the basic concept in the Gibbs model. The total energy of an image x is determined
by Hamiltonian H(x) which depends on interactions - combinations of gray levels in cliques.
A potential of gray level combinations is assigned to every clique. Potential values are
represented by a three-dimensional array V. The structure of ¥ is similar to the structure of A.
Vija denotes a potential value belonging to clique [i, jle W, and a gray level combination
de D. Similarly to the case of A& for [0,0] only Vo4, de{0,...,n,~1}, are defined while the
remaining elements are zero. Hamiltonian is given by

H(x)= D, D Vi hya(¥) =V *hix) @)
[

i,jleW deD

where * denotes a scalar product of arrays V and h(x) reshaped into vectors. How the
potential V' is estimated will be shown later.

Gibbs probability distribution (probability of image x, within the space of all realizations of
the given GRF with potential V) is given by
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B exp(— H(x”)) B exp(—V*h(x”))
o) = Yexp(- H(x)) Y exp(-V *h(x)) ®

xeX xeX

Pixelwise stochastic relaxation

is a method [1] of generating samples of a GRF as a Markov chain. Given a potential V, each
next sample is obtained by random choosing according to a conditional probability given only
by the current sample. The chain begins with an initial image X9 In every microstep, the gray
level in a randomly chosen pixel [r,c] is changed to a new random value generated from the
distribution conditional on current gray levels in a set of pixels interacting with [r,c]. A
macrostep is a set of microsteps in which all pixels of the image have been passed.

In our case, the set of interacting pixels is defined by the search window W, excluding clique
[0,0] denoting the pixel [r,c] itself. It can be described as { [r+i, ct/], [i,jle W\ [0,0] }. From
relation (5) it follows that conditional probability of the gray level in the given pixel [r,c]
provided values of gray levels in the set of interacting pixels is

eXp Z [/i,j,X(V,c‘)—x(r+i,c+j)

Pr(x(r,c)‘x(r+i,c+j) i, /1€ W\[O,()]) _ Ze[;gem[o,zo]: _ | o
uet [i,/1ew[0,0] b u=x(rtict))

The set of probabilities Pr(x(r,c) < u) ,u=0,1,...,n,~-1 follows as

Pr(x(r,c) Su) = Y (Pr(x(r,0)) = b x(r +i,c+ j), [i, /1€ WA[00]), u=0,1,....m,1. (7)
b=0
After generating a uniform probability P, the value u corresponding to the nearest greater
probability of the set (7) is selected.

For pixels within marginal strips of an image, the set of interacting pixels is not complete -
interactions range beyond the image. A possibility how to solve this problem is to repeat the
image periodically. Values from the opposite side of the image are taken for the ones that are
missing beyond the margin. Then, if we put copies of a simulated image as tiles, we can see
that the texture joins continually at borders.

Estimating of potential V

The solution follows two steps [1]: a first approximation derived from truncated Taylor
expansion of the log-likelihood function will be refined by an algorithm using stochastic
relaxation.

Maximum likelihood estimate

To estimate a potential ¥ from a given GRF training sample x,, maximizing of the likelihood
function can be applied. The likelihood function gives a probability of generating the sample
X, under the condition of a potential V. For computational reasons, logarithm of the likelihood
function is used. After substituting from (5) we receive

V) =L[V *h(x,)—log Y _exp(V *h(x))] . (8)

L(V,xn) = ﬁlog Pr(x, YN
xeX

First and second derivatives are
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AWV,x,) 1
AT CARNACEIR ®
PLV,x,)
% ——(MNyggﬂmx», (10)

where E(..) denotes the mean value and Cov(..) covariance of the histogram A over the random
field (population of images) defined by the potential V.

The condition of the zero first derivative means that given an estimate V, the mean value of
the histogram is equal to that of sample x,,

L (h0) = h(x,) - (11)

First approximation

The first approximation of the potential is based on a decomposition of the likelihood function
into a truncated Taylor expansion about a point of zero potential ¥'=0. Within the limited
space of this contribution only main results may be shown.

The zero potential defines a random field with independent components (independent random
field - IRF). In this case, probability of gray levels in a pixel is uniform and gray levels in
different pixels are mutually independent. Probability of a gray level difference d in a double-
pixel clique [i,/] is (the fact that it is not a sample but a population characteristic is denoted by
a bar)

] —_|d
7., URF)="" 2' | VdeD, [i,jle W\[0,0] . (12)

To hold compatibility with our convention, we will define fo,o, ,(IRF) by the probability of a

gray level - constant 1/n, in the range of values d=u=0,1,...,n,-1, and with zeros for
remaining values. Then

1/n, for d=1,...,n
0 for d=n,+1,...,n, .

u o

f0,0,d (IRF)= < (13)

The first approximation of the potential is being sought for in the form with free parameter 4

VO = ap,(f,u(x) = F., URF)) . [ijleW, deD. (14)

The estimate of A maximizing the value of the likelihood function is given by

Z piz,j 'Z(fi,_/,d(xa)_J;i,_/,d(]RF))z

/i _ [i,jleW deD

Z pi3,j 'Zf_i,j,d(lRF)'(l_ﬁ,j,d(lRF))'(fi,j,d(xo)_f_i,j,d(IRF))z

[i,jleW deD

(15)

The last operation of this step is reducing the search window W only to cliques that contain a
significant interaction. The reduction is necessary because the computational complexity of
the next step depends on cardinality of the set W. The significance of cliques can be compared
by their relative energies defined as
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=V forax) T J1EW . (16)

deD

An example of matrix e is displayed in Fig.2. The values of relative energy of the most
important cliques create a peak. The search window W may be limited to the area covering the
region of the peak.

Stochastic refining

In order to refine the estimate of potential V, a pixelwise stochastic relaxation may be used. In
every macrostep, the potential is modified according to the difference between relative
frequencies of interactions in the training image x, and the last generated image X0

Vigd =V +Bp,; (fi,j,d (x,)=fija (x(”)), [i. jle W, deD, (17)

is a sample generated with current
; :
1.5
Difference between the training and current sample 0.5

potential 1 from sample x“". -8
can be measured by chi-square distance 2 0 2 4

where x"

N
(¢

The chain starts with a sample X0 generated from a
sample of IRF with the first potential approximation -4
9. The strength of the correction A7) should de- -2
crease with the number of steps passed. The form of

L) =1/(c, +c,t) (18)

has been used with empirically estimated values of
parameters ¢ and c.

N

—_

x©® o A N O

x®) z Z( fiia(x,)— f”d(x(’))) (19)  Fig.2: The significant part of the

[i.j]ew deD relative energy

When the chain tends toward the equilibrium, the
difference decreases to a constant and its fluctuations
decrease to zero. A comparison of the input image
and the GRF sample after stochastic relaxation is shown in Fig.3.

symmetry).
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Fig.3: Comparison of a - an input texture (detail 256 x 256 pixels),
b - sample of GRF model, potential estimated
by stochastic relaxation (137 macrosteps) .

The multilinear model 2]

Our aim is to relate the characteristics of the GRF model of the image to the value of the
crack velocity CGR = v. Due to general qualities of CGR its logarithm y = log;o(v) must be

consi-dered. To characterise the GRF model, we
have chosen a set of significant values of relative
energy e;; (16). For this application they are
reshaped into a vector € ={e,}, a=1,2,....,k. The
simplest model expressing the CGR as a func-tion
of a set of image parameters e, is a multilinear
function resulting into a regression equation (20).

The values of parameters b can be estimated using
the least squares method. The input information is
composed of the set of images with assigned values
of the CGR. From every image, a set of image GRF
characteristics e, is computed, completed with
constant 1 and arranged into one row of matrix F
(21). Then the system of equations can be written in
the form (22) where Y is a column vector of
logarithms of CGR assigned to single images and B
(23) is a column vector of estimated parameters.

Not all characteristics e, predicate the CGR. An
instrument for testing the significance is the test of
the zero value of the estimated coefficients b,, a =
0,1,....k. We test the hypothesis Hy: b,= 0 against
the alternative H,: b,# 0. The test criterion is a
Student’s ¢-distributed statistic (24). If the absolute
value of ¢, is lower than the critical value at the
selected level of significance & and ¢-k-1 degrees

k
7= be, +b, (20)
a=1
e e e, 1
F=|: + 1)
el el el 1
Y =FB (22)
B:[bl b, b, bk+l] (23)
t, = b, (24)
" s(b,)
s(b,)=/(s7),, (242)
s} =s*(F'F)™ (24b)

2 Z(y" ~5) (240)

e
qg—u—1

<Ii_an (q — k- 1) (25)

ta
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of freedom (25), the hypothesis Hy cannot be rejected and the a-th column in the matrix F
should be excluded.

APPLICATION

The method was applied to a set of fatigue fracture surfaces of four labotarory specimens
(C16+19) of stainless steel AISI 304L used in nuclear power plants. The specimen type was
CT (Fig.4) with the initial notch length 12.5 mm. Constant cycle loading with parameters
AF=3400 N, R= 0.3, f= 1 Hz occured in water at 20°C. Crack length was measured by COD.

Fatigue crack surfaces were documented using SEM with magnification 200x. The sequence
of images was located in the middle of the crack surface (Fig.4) and the images were
distanced by 0.4 mm. The direction of the crack growth in images is bottom-up. The real area
of one image is about 0.6 x 0.45 mm (the images overlap by 0.05 mm). The digital
representation in 1200 x 1600 pixels and 256 brightness values was used. Images were pre-
processed using normalisation [3] to exclude fluctuations in the mean brigtness and contrast.
The whole number of images was 164. An example of a typical texture is shown in Fig.3a.

From frequently repeated records of the crack length vs. number of cycles the estimates of the
CGR were computed. The course of the CGR related to the crack length was estimated and
every image was assessed a value of the CGR pertinent to its middle.

Relative energies (16) have been computed for all images. For the multilinear model, 31
cliques [i,j] significant in all images were chosen from the area of the search window. From
them 25 have been found to be significant in multilinear regression (20) at the level of
significance ae= 0.05. The result is plotted in Fig.5. The agreement between input velocities
of the crack growth and that ones given back from the GRF model is very good.

50%0.2

CGR - velocity of crack

0.5

60 0.5

27.5:0.5

T
i
T
212.5: 0.2

- 0.2
5 25:0.2

62.5:0.5

01 t
{ 1 { 0.05
T T T T T T TR 0\05 0\1 0\2 v EXBERIMENT
fatigue
Fig. 5: Comparison of crack velocities v taken
Fig. 4: Specimen for fatigue tests and for input and v given back from the
locating of images in fatigue GRF model of image texture.
crack surface. One point represents one image. The line

v = v indicates the ideal agreement.
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CONCLUSION

The theory of Gibbs random fields was applied in the simplest possible version. However, it
reflected sensitively the relation between the velocity of a fatigue crack growth and the
texture in images of crack surface. GRF model brings a new hopeful method for textural
fractography.
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