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ABCTRACT

This contribution describes a study of the behavior of a crack growing in a protective layer
and penetrating through an interface into a substrate. Special attention is devoted to a crack
touching the interface. Conditions for the stability of a crack terminating at the interface
between two materials are analyzed. The problem is studied under the assumptions of linear-
elastic fracture mechanics. A new tentative criterion of stability based on application of the
strain energy density concept is formulated and applied to the problem. The suggested
criterion is used to estimate the critical applied stress for the failure of a substrate caused by a
crack growing through the protective layer. It is shown that the critical stress may strongly
depend on the fracture toughness of the substrate and on the bi-material parameters.
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INTRODUCTION

Components with protective coatings are increasingly being applied in engineering. The
interface between two different materials (i.e., coating and substrate) represents a weak point
for many applications of such structures. Generally, the existence of two regions with
different material properties and the presence of an interface strongly influence the
distribution of the stress in composite bodies. Fracture usually starts at a defect in the
interface, and the complex nature of the stress in the vicinity of an interface influences the
behavior of a crack.

This contribution describes a study of the behavior of a crack growing in a protective layer
and penetrating through an interface and into a substrate. Special attention is devoted to a
crack touching the interface. An example of such a configuration of a crack is the case of a
brittle coating on a tough substrate, where a whole network of cracks very often appears and
the individual cracks stop when they reach the interface. The aim of this contribution is to
suggest a criterion which makes it possible to estimate the critical applied stress for the failure
of such a substrate.

The behavior of stress singularities at the tip of a crack terminating at an interface between
two different elastic materials has been studied  [3,7,8], and a comprehensive theoretical
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treatment of the corresponding boundary problem exists in the literature. The formulas that
describe the displacement and the distribution of stress in the vicinity of a crack terminating at
the interface have long been known [15]. The common approach employed in the literature
assumes the stress singularities to be of the form   r - p ,  where  0 < Re(p) < 1 and  r  is the
distance from the tip of the crack. The characteristic equation for obtaining the power of the
singularities p can then be formulated by applying the corresponding boundary conditions.

Expressing the elastic properties of two different materials requires four constants, namely,
the elastic modulus and the Poisson's ratio for both materials. If the two materials are strongly
bonded together (i.e., interface of a welded type), the strains in the interface area depend on
only two parameters only. In the following composite parameters α and β are used for plane
strain
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where Ei  and  νi   ( i = 1,2 )  are the   elastic modulus and the Poisson's ratio of the materials.
The values of the power of singularity are then functions of both composite parameters, i.e.,
p = p(α, β). The stress distribution around the crack tip can thus be expressed as the sum of
the terms

/ 2 ( , , , , ) /σ π φ α β θ= p
ij I ijH f p r (2)

where fij  =  f ij (θ, α, β, φ, p)  is a known function of  the polar angle  θ  and the two
composite parameters.   HI is the value of the generalized stress intensity factor corresponding
to the power of singularity  p  and must be determined numerically.

The fact that the value of the power of singularity p differs from 1/2 means that the
conventional fracture mechanics approach (developed for homogeneous bodies where  p =
1/2)  cannot be applied.

The conditions necessary for the stability of a crack terminating at the interface between two
materials are analyzed in this paper. The problem is studied under the assumptions of linear-
elastic fracture mechanics, and a bi-material body with a crack terminating at the interface is
used to model the configuration studied. A new tentative criterion of stability based on
application of the strain energy density concept is then formulated. To this aim general
formulas expressing the dependence of the strain energy density on the material
characteristics α and β are introduced, and the criterion of stability for a crack with its tip at
the interface is formulated. The suggested criterion is used to estimate the critical applied
stress for the failure of a substrate caused by a crack growing through the protective layer. A
numerical example showing the application of the stability criterion is presented.

STABILITY CONDITIONS

In the following chapter the stability conditions are formulated for a crack terminating at the
interface at an angle φ, see Fig.1. Note that the crack generally propagates under mixed mode
loading conditions.
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Generalized strain energy density factor
The strain energy density factor  S  was originally introduced by Sih [11] for cracks in
homogeneous materials. In the following the generalized strain energy density  factor  Σ   for
a crack terminating at the interface is presented.

Fig. 1. A crack terminating at the interface at the angle φ , the direction of the crack growth in
the substrate is given by the angle ψ.

Strain energy density.

The Strain energy density  w  is given by
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where  σij = σI
ij + σII

ij and  εij = εI
ij + εII

ij the are corresponding components for mode I and II
of the stress and strain, respectively, in a volume element  dV  [10]. Reduced to plane
problems, w can be written as follows (our considerations are limited to the material 2, i.e.,
the substrate)
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For plane strain  and  k = (1-2ν2),  µ2 is the shear modulus and ν2 is the Poisson's ratio of the
substrate.

Distribution of the strain energy density. The expression for strain energy density at the tip of
the crack can now be easily derived from formulas 2 and 4. It holds that
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where A11 , A12  and  A22   are functions of the polar angle  θ , the composite parameters  α, β,
and the angle φ between the crack and the interface.  HI and HII  are the values of the stress
intensity factors corresponding to normal and shear modes of loading.

Strain energy density factor. Let us write expression (5) in the form
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The function  Σ generalizes the strain energy density factor for cracks terminating at the
interface and is used in the following to formulate the stability conditions.

Unlike the homogeneous energy density factor S, the generalized strain energy density factor
Σ depends on the distance r from the tip of the crack, see Eq. (6).

Formulation of the stability criterion
A theory based on the concept of the strain energy density factor S formulated by Sih [11] for
a crack in homogeneous materials (i.e. for power of singularity p = 1/2) proceeds from two
fundamental hypotheses about the extension of a crack:

the crack initiation will start in the radial direction along which the strain energy density  S  is
a minimum, and the critical value of  the strain energy density  S = Scr  governs the onset of
the crack propagation.

Note that  Scr  is a material constant and in special cases can be related to  KIC , the fracture
toughness of the material.

In the same way, for a crack with its tip at the interface (i.e., for a power of singularity p ≠
1/2), a generalized strain energy density approach can be formulated, where  S = Σ , the
generalized strain energy density factor. Again, the first hypothesis can be used to predict the
direction propagation of the crack into the substrate (see Fig.1) and the second hypothesis
determines the onset of the crack propagation. Moreover, if we assume that the presence of
the interface influences the propagation of the crack into the substrate only quantitatively and
that the mechanism of the crack propagation is the same, it holds that

1-p
2

cr crS =Σ r , (8)

where  r  is the unknown distance from the tip of the crack at which the criterion is applied.
The stability condition then has the form

 Σ  <   Σcr . (9)
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Fig. 2. A crack terminating perpendicularly at the interface. The applied stress  σappl is
oriented parallel to the interface. This configuration corresponds to the normal mode of
loading.

Stability criterion for the normal mode of loading. If a crack terminating normally at the
interface and the applied stress is oriented parallel to the interface, see Fig.2., the stress state
around the crack tip corresponds to the normal mode of loading and HII = 0 .  The crack will
grow into the substrate perpendicularly to the interface.   Moreover only one real root is found
for the power of singularities p for the usual combinations of materials.

Then
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It follows from Eq. (9)  that the crack will propagate if

HI <  HIC    , (12)

where  HIC  is the critical value of the generalized stress intensity factor for normal loading,
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Application of the stability condition (9) makes it possible to estimate the critical applied
stress σcr. If the value of the applied stress σappl  > σcr the crack will grow into the substrate.
The value of σcr depends on the geometry and the boundary conditions, on the composite
parameters α and  β, and on the fracture toughness  KIC  of the substrate. Unlike the case for a
homogeneous material, for this case the condition of stability, and thus the critical applied
stress σcr , depends on the distance r for which the condition is applied. A numerical example
of this calculation is given in the next chapter.

NUMERICAL EXAMPLE

Bodies with protective layers correspond to combinations of two materials, and everything
derived above for cracks in bi-materials is generally valid. The coating thickness is usually
small compared to the thickness of the substrate, and in the following the numerical model
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shown in Fig.3 will be used. We supposed a single crack in the coating which propagates
perpendicularly to the surface, and we estimate the applied critical stress  σcr  . Knowing the
value of σcr  makes it possible to decide if the crack will stop at the interface or penetrate into
the substrate. The elastic constants of the coating and the interface are given in Table 1.
Calculation of the critical stress  σcr  corresponding to the proposed criterion consists of the
following steps:

Estimate α and β, and the value of the power of singularity p, and express the stress
components and the expression for Σ .

Evaluate the generalized stress intensity factor  HI  for the given geometry and material
parameters, see Table 1.

Apply the stability conditions and estimate the critical applied stress,
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where  KIC  is the fracture toughness of the substrate (material 2).

Table 1. The composite parameters  α and β, the corresponding value of the power of
singularity  p,  and the  generalized stress intensity factor HI . The values presented
correspond to a tension specimen with a protective layer (Fig.3), the applied stress
σappl = 1MPa.

E1/E2 αααα ββββ p HI [Mpa.mp]
0.2 -0.286 0.2 0.3662 13.90e-2
0.5 -0.179 0.5 0.4339 9.02e-2
1.0 0.000 1.0 0.5000 6.28e-2
2.0 0.357 2.0 0.5745 4.49e-2
5.0 1.429 5.0 0.6789 3.22e-2

Calculations of HI   values have been performed by finite element system ANSYS [1].

The value of the distance r at which the criterion is applied influences the resulting values of
the critical stress, but the dependence is not to strong, see Table 2, where results for two
possible values of  r  are presented. In the first case   r   was set to the value rp  corresponding
to the size of the plastic zone in the substrate as calculated by linear elastic fracture mechanics
under plane strain conditions. For a cleavage type of fracture, the distance r can be related to
the grain size of material, see Table 2, where the critical stresses for  d = 100µm  are
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presented. Moreover, for comparison, the critical stress calculated by another criterion based
on the average stress calculated across the distance r = d  from the crack tip [6], is presented.
It can be concluded that for the current materials for which the ratio is   0.2 <  E1/E2  < 5  all
approaches give comparable results.

The resultant calculations are presented in Table 2, where the values of the critical stress  σcr

for different values of the coating/substrate ratio  E1/E2 are presented.

Table 2. Values of the critical stress σcr corresponding to a tension specimen (Fig.3). σ(1)
cr

corresponds to Eq.(17) with  r = r p , σ(2)
cr  corresponds to Eq.(17) with  r = d = 100µ, and

σ(3)
cr is taken from reference [6].

E1/E2 σσσσ(1)
cr [Mpa] σσσσ(2)

cr [Mpa] σσσσ(3)
cr [Mpa]

0.2 50.7 38.5 46.9
0.5 61.3 57.0 63.8
1.0 79.6 79.6 79.6
2.0 109.7 110.2 92.4
5.0 166.6 158.8 94.9

Fig. 3. Dimensions and geometry of a tension specimen with a protective surface layer.
T = 15 mm, t = 1 mm, l = 30 mm.

CONCLUSIONS

A fracture criterion that deals with the initiation of a crack which propagates to fracture from
of a crack terminating at an interface has been suggested. The problem was studied under
assumptions of linear elastic fracture mechanics. The criterion of stability formulated is based
on application of the strain energy density concept as originally formulated by Sih for cracks
in homogeneous materials. To this aim general formulas that express the generalized strain
energy density factor for a crack terminating at an interface have been derived. It was
assumed that the crack initiation starts in the radial direction in which the generalized strain
energy density factor  Σ  is a minimum and that the critical value   Σ = Σcr  governs the onset

 material 1

material 2

l

T
t

σσσσappl

 material 1
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of crack propagation across the interface. Special attention has been devoted to the case of a
crack perpendicular to the interface. The critical applied stress σcr for a tension specimen with
a protective surface layer has been calculated as an example.  The critical stress to failure the
substrate depends on the composite parameters α and β and on the value of the fracture
toughness of the substrate. The existence of cracks in the surface brittle coating on a tough
substrate may substantially decrease the critical failure stress of that substrate.
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