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ABSTRACT

The recently proposed spatial model of the intergranular crack propagation was applied to
models of grain structure represented by Voronoi tesselations generated by various point
processes producing substantially different cell size distributions.

Statistical properties of the individual features composing the fracture surface and different
roughness parameters of the simulated crack have been examined and their sensitivity to
the3D structural characteristics was tested. Finally, the models of the relation between
characteristics of fracture lines and surface roughness were critically examined.

INTRODUCTION

A study of the computer simulated intergranular crack propagation in grain structures
modelled by Voronoi tessellations of different types was described in [1]. It was based on the
model proposed by Šandera et al. [2] for the subcritical crack development within the process
zone at the tip of the fatigue precrack. The selected Voronoi tessellations covered a wide
range of grain structures from a nearly isohedral tiling to a dispersed cell structure formed by
regions of small cell separated by cells of approximately 70times greater volume v
(CV v ≈ 4.5). The fracture lines along the crack propagation direction and perpendicular to it
were analysed together with the whole fracture surface with the following results: the first
order geometric characteristics of fracture features (i.e. mean lengths El of fracture line
segments, linear roughness RL, mean area Ea of fractured facets, mean number of their
vertices, mean perimeter, mean orientation and surface roughness RS) are only weakly
affected by the underlying cell structure and a rather detailed investigation covering at least
about 103 features is necessary to detect some effect of the cell structure. On the other hand,
the second order quantities, like variances of the geometric cell characteristics or their
coefficients of variances are much more structure sensitive as demonstrates Tab. 1., in which
the ratios of maximum and minimum values observed in the five examined fractured cell
systems are compared.

Tab. 1. Ratios of maximum and minimum observed values

CV v El CV l Ea CV a RL CV RL RS CV RS

•
•

min
max 1125 1.17 2.1 1.2 5.4 1.1 2.2 1.1 3.9
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Several quantities have their extremes at the mildly random cell structure of the Poisson-
Voronoi tessellation (CV v = 0.42), hence the fracture characteristic are not monotone
functions of CV v or of another characteristics of the cell size dispersion.

In the present paper, the above mentioned study is extended to other roughness parameters
characterizing the fracture surface in a more detailed manner than linear and surface
roughnesses. As the medium of the fracture propagation, three unit space filling cell (grain)
systems have been chosen (for details see [1], the mean cell volume Ev = 1 in a unit
tessellation):

a) slightly perturbed dodecahedral tiling generated by the Bookstein model on the fcc lattice
denoted by Bcf0.005 (0.005 is the standard deviation a of 3D normal N(0,a2I)  distribution
of the i.i.d. distributed node shifts of the unit face-centred cubic lattice),

b) Poisson-Voronoi tessellation (PVT),
c) tessellations generated by the Bernoulli cluster field with spherical and globular clusters

(embedding sphere diameter δ = 0.05) and the mean cluster cardinality N = 70 (notation
BePS70, BePG70.

The 2D sections of examined models shows Fig. 1.

Bcf0.005 PVT BePS70
Fig. 1 2D sections of examined models.

ROUGHNESS INDICES

The stable growth of the subcrack within the process
zone is simulated as a quasi-continuous process
starting at defined front of the long fatigue precrack.
Individual intergranular facets adjacent to the crack
front are assumed to break gradually in an unstable
manner according to prescribed physically justified
rules [2]. The geometry of the model is shown in
Fig.2. A right-handed Cartesian coordinate system is
attached to the cubic zone forming a section of
unbounded random tessellation T: the x-axis
corresponds to the crack growth direction, the z-axis
to the macroscopic direction of the crack front.

Fig. 2 Geometry of the model
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In order to characterize the shape of the fracture surface, several simple numerical
characteristics called the roughness indices have been introduced (for details and discussion
see [3]). They are based either on the analysis of randomly or systematically selected fracture
lines L or on the detailed knowledge of the whole or substantial part of the fracture surface S.

Fracture lines
Let S be the fracture surface and Fv(y) be vertical planes parallel with the y-axis with the
normals v. Then Lv = Fv(y) ∩ S are the fracture lines; the natural choice is v along x- and z-
axes, then Lx, Lz are approximately parallel with and perpendicular to the crack front,
respectively. Let ||•|| denotes the length; then L  and )(LPu  are the lengths of L and of its
orthogonal projection Pu(L) into the direction u.

The most common characteristic of fracture lines is the linear roughness RL
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Similarly, the vertical roughness RLV is
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where TP is the total projection. Consequently, RLV(x) is the vertical roughness of the fracture
line approximately parallel with the crack front and describes the "horizontal overlapping" of
the crack front at the distance x = const. from the origin of the crack propagation.

RL(v)  = 3.00 RL(v)  = 3.50 RL(v)  = 3.50 RL(v)  = 4.00
RLV(v) = 2.00 RLV(v) = 2.00 RLV(v) = 2.50 RLV(v) = 2.50
RLO(v) = 1.00 RLO(v) = 1.50 RLO(v) = 1.00 RLO(v) = 1.50

Fig. 3 Roughness indices.

Further, the index of overlapping RLO is
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The index of overlapping RLO(z) characterizes an average "vertical overlapping" along the
fracture path z = const, i.e. those places where the advancing crack front goes temporarily in
the backward direction.

The profile or Behrens roughness RLp(v) of L(v) is defined as the ratio of the mean peak
amplitude to the mean peak period and the estimator
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was proposed in [4]; ∆y is the constant (vertical) displacement of a horizontal (i.e. of the
direction v × y) test line of length lt and pi is the number of intersections #(lt(y ∩ L)).
However, ∆yΣpi is the estimate of the length of the total vertical projection of such a part
Py(∆Lv) that its projection Pv × y(∆Lv) has the length lt. Hence RLp is equal to RLV/2. However,
the definition of RLp clearly elucidates the meaning of RLV.

The linear roughness of an isotropic system of segments is clearly 571.12/ == πiso
LR  and

further 12 === iso
LO

ipo
Lp

iso
LV RRR . The meaning of various indices illustrates Fig. 3.

Fracture surface.
The direct generalization of the above roughness indices concerns the whole fracture surface
S or its relevant proportion. The indices then compare the true area of the fracture surface S
or its selected projections with its projection into the mean fracture plane. Let Pu(S) be the
orthogonal projection of S into the plane the normal of which is u. A direct analogy of the
linear roughness ( •  is the surface content) is the surface roughness
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Similarly, the vertical surface roughness and surface overlapping indices are
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They characterize the "horizontal" (in the direction v) and "vertical" overlapping of the
fracture surface, respectively.

The roughness RS of an isotropic system of (non-overlapping) surface fragments is clearly
2/2 == ππiso

SR  (the ratio of the surface content of a half-sphere to the area of its equatorial

disk). Further, 1== iso
SO

iso
SV RR .

STEREOLOGY OF FRACTURE SURFACE

The estimation of the surface roughness indices of real cracks is very difficult, hence several
stereological formuli relating RS to the indices of fracture lines have been proposed. They are
based on simple models of the fracture surface formed e.g. by pyramids of different bases etc.

The quadratic relations are due to Wright and Carlsson [5] and are supposed to hold for a
triangular bases of peaks:

571.12/,:II,)(:I 2222222 ==+=−+= πkRkRRRRkRR LVLOSLOLLOS .
The same authors proposed also a linear relation (quadratic bases) [6]

( )LOLLOS RRkRR −+=:III .
Coster and Chermant [7] proposed simpler relations valid for fractures without overlapping
(i.e. RLO = 1)

( ) ( ) 752.112/,1:V,11:IV 1 =−=′+=−′+= −πkRRRkR LVSLS
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(the assumed linear relation RLV = k'(RL - 1) clearly holds exactly for an isotropic fracture line
RLV = 1 as well as for a flat fracture line RLV = 0 and the correct values 2 and 1 are then also
obtained for RS). Finally, Underwood [8] advocates similar formula

( ) 273.1/4,11:VI ==′′−′′+= πkRkR LS .

SIMULATION AND ESTIMATION

The tessellations have been produced in a unit cube with the edges corresponding to the
chosen coordinate system. The expected number of generated points was 15 000 which is the
corresponding cube volume in the unit tessellation. The whole unit cube was intersected by a
mesh of 2 × 99 parallel Fx(y) and Fz(y) planes.  The vertices of all cell facets, hence also of all
fractured facets fi, are known and their intersections F•(y) ∩ fi with each plane of the mesh can
be found. Then the length of each fracture line as well as its arbitrary orthogonal and total
projections can be exactly calculated. All fracture line indices follow immediately.

The tessellation is corrupted by the edge effects near the cube sides and irregularities of crack
propagation occur at the start, end and sides of the crack. Consequently, a protecting 3D
frame of the width 0.2 was used and the estimation was limited to the inner cube of the size
0.6 × 0.6 × 0.6.

The obtained results for the index RLO(x) are shown in Fig. 4 (note the higher overlapping at
the later stages of the crack propagation). The regression lines reveal very roughly the effect
of variables x, z on the values of indices - see Tab. 2, where also the corresponding mean
values are shown.

Tab. 2 Regression lines, mean values (bold face) and ranges (italics) of fracture line indices

Bcf0.005 PVT BePS70
x z x z x z

RL
mean
range

0.069x+1.43
1.46

1.1 - 2.1

0.014z+1.34
1.35

1.1 - 2.9

0.49x+1.38
1.58

1.2 - 2.3

-0.088z+1.55
1.51

1.2 - 3.0

0.19x+1.44
1.52

1.1 - 2.5

-0.49z+1.73
1.53

1.1 - 2.7
RLV
mean
range

0.053x+0.80
0.82

0.4 - 1.4

0.083z+0.71
0.74

0.4 - 1.7

0.38x+0.76
0.91

0.5 - 1.4

-0.054z+0.83
0.81

0.4 - 1.7

0.24x+0.72
0.82

0.4 - 1.6

-0.41z+0.96
0.80

0.3 - 1.5
RLO
mean
range

0.025x+1.04
1.05

1 - 1.3

0.084z+1.03
1.06

1 - 1.8

0.23x+1.01
1.10

1 - 1.5

0.060z+1.17
1.15

1 - 2.1

0.035x+1.09
1.10

1 - 1.7

-0.20z+1.23
1.15

1 - 2.0
Surface indices have been calculated by combining exact calculations with simple
stereological methods. Their values are summarized in Tab. 3 (bold and italic letters denote
maximum and minimum values, resp.) and plotted in Fig. 5.

Tab. 3 Surface roughness indices and their coefficients of variation

Tessell. RS CV RS RSV(x) CV RSV(x) RSV(z) CV RSV(z) RSO CV RSO
Bcf0.005 1.54 0.11 0.63 0.19 0.67 0.20 1.02 0.033
PVT 1.81 0.043 0.74 0.048 0.90 0.063 1.09 0.035
BePG70 1.79 0.087 0.75 0.11 0.86 0.14 1.08 0.040
BePS70 1.79 0.10 0.71 0.16 0.88 0.14 1.10 0.069
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Finally, six models of the relation between RS and fracture line indices RLV, RLO have been
compared with the obtained results. For each of n realizations, the values

( ) ( ) ( ) ( ) ( )zRRzRxRRzRxRR LOLOLVLVLVLLL === and.,.
(prime denotes averaging over all x, z values) have been inserted into the model equations in
order to obtain the estimates [RS(n)]j, j = I,II,...,VI, i=1,...,n. Then the mean linear and squared
quadratic deviations

( ) ( )[ ] ( ) ( )[ ]( )∑∑
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have been calculated. Tab. 4 presents the results of this comparison (bold face denotes the
best model); there were no substantial differences between BePS70 and BePG70 tessellations,
hence the both tessellations have been treated together.

Tab. 4 Mean linear (∆1) and squared quadratic (∆2) deviations of observed and model values.

I II III IV V VI
Bcf0.005  ∆1 -0.097 0.087 0.069 0.005 -0.12 0.15

∆2 0.10 0.098 0.071 0.039 0.13 0.15
PVT         ∆1 -0.14 0.067 0.036 -0.086 -0.025 0.11
                ∆2 0.16 0.078 0.045 0.11 0.04 0.13
BePG70   ∆1 -0.20 0.063 0.022 -0.13 -0.053 0.12

+ BePS70 ∆2 0.21 0.080 0.052 0.15 0.090 0.13

DISCUSSION

Roughness indices of fracture lines
The effect of the variables x, z on the change in the fracture line indices is nearly negligible in
quasi-isohedral Bcf0.005 tessellations and  much higher in other examined tessellations (Tab.
2). RL•(x) indices grow along the crack path, R•(z) are nearly constant in Bcf0.005 and PVT
and markedly decreasing in BePS70. The latter observation suggests an asymmetry in the
crack front propagation the origin of which is not clear. The vertical overlapping increases
with the growing cell size dispersion. Of special interest is the dispersion of index values
shown in Tab. 2 (the rows denoted "range"). The particular values have been determined from
the fracture lines composed from 30 - 40 segments (facet chords) and the number of
independent realizations of the crack was typically 20. Tab. 2 shows that under such sampling
conditions, the range of the index value is of the order of 1 and more, the only exception
being the index RLO, where the range is narrower in some cases. The distribution of the values
is usually asymmetric with a positive skewness and occasionally extremely high values. Such
is the situation in stochastically equivalent systems with very simple rules for the crack
propagation. As was already noted in [1], the number of facet chords included in the analysis
should be of the order of several hundreds in order to obtain a reasonable interval estimate.
Consequently, even higher variability of roughness indices can be expected in real materials.
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Surface roughness indices
Ratios of maxima to minima have similar values as it was presented in Tab. 1 for RS. With
few exceptions (which may be inaccuracies only), it can be concluded that the maximum
values of surface roughness indices and minimum values of their coefficients of variation are
attained by cracks in PVT, whereas just a reversed case (minima of indices, maxima of their
coefficients of variation) is produced by cracks in nearly isohedral Bcf0.005. Only CV RSO

has minimum in Bcf0.005 and maximum (somewhat dubious) in BePS70. Moreover, the
differences between indices of PVT and tessellations generated by Bernoulli cluster fields are
rather small.

Fig. 5 illustrates the distributions of the index
Bcf0.005 values, indices of tessellations gene
higher values and PVT indices are restricte
RS ≈ 0.53(1 + 3RSV) seems to hold between RSV

(RSV >≈ 0.7). Clearly, no vertical overlapping 
Further, the isotropic values of RS, RSV are onl
values in individual crack realizations with
considerable: ≈ 0.7 in Bcf0.005, BePS70, BeP
PVT. Again, samples of rather great size ar
structures with rigid rules of crack propa

nnRs )2.005.0(CV −≈•  for n samples 
exception of surface indices of vertical ove
expected not only in systems with high cell s
systems (due to the great effect of crack orienta

c) Relation between RS and fracture line rough
The proposed models II and VI can be 
underestimated and a strict rejection must be 
serious overestimation (if ∆1 ≈ ∆2, which hold
bias has the same sign in nearly all cases; if ∆1

value). The plausible explanation of the mo

Fig. 4 The values of RLO(x) obtained in 15
realizations of PVT.
Fig. 5 Relations between indices of surface
roughness.
Materials Structure & Micromechanics of Fracture

 values: nearly the whole range is covered by
rated by Bernoulli cluster fields are shifted to
d to medium range only. A linear relation
 and RS, whereas RSO > 1 only when RS >≈ 1.6
takes place if the vertical roughness is small.
y rarely exceeded. The range of surface index
 typically 2000 of fractured facets is quite
G70  tessellations and slightly below 0.5 in

e necessary even in stochastically equivalent
gation. The coefficient of error CE RS• is
of the size ≈ 2000 fractured facets (with the
rlapping) and higher error values should be
ize dispersion but also in nearly regular grain
tion).

ness indices
rejected because the index RS is seriously
applied also to the model I because of equally
s in all cases under models I, II, VI, then the
 << ∆2, the estimates oscillate about the correct
del failures are the implicit assumptions of
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isotropy in the model VI and  of a high vertical overlapping in the case of quadratic models I,
II.

Consequently, only models III, IV and V remain in the play. Strictly speaking, the simple
model V is the best one for PVT but a more sophisticated model III taking account of vertical
overlapping is nearly equivalent. Because of small differences between index values in PVT
and BePG, BePS and also due to a considerable vertical overlapping in the latter two cases, its
best validity for cracks in the tessellations generated by Bernoulli cluster field is hardly
surprising. Finally, the most simple model IV assuming a direct relation between RS and RL

describes at best cracks in regular quasi-isohedral Bcf0.005 tessellation. The negligible
vertical overlapping in this case is a reasonable explanation of this success demonstrated at
best by the smallest observed value of ∆1 and a great difference between ∆1 and ∆2.

As the estimate of surface roughness is nearly exclusively based on the fracture line
roughness in the examination of real cracks, the reliability of the considered models is of
primary importance and a proper attention will be devoted to this line of study in the next
future.

A rather natural objection against the present study can be made, namely that its approach is
based on obsolete notions and that a characterization of fracture surfaces by fractal analysis is
more appropriate. However, the authors firmly believe that simple characteristics with a
straightforward and illustrative geometric interpretation must be preferred in the examination
of such complex phenomena as are fracture surfaces in highly variable space filling structures.
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