
MSMF-3 Conference Proceedings
June 27 – 29, 2001 Brno, Czech Republic

288

MESOSCOPIC SCALE THERMAL FATIGUE DAMAGE
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ABSTRACT

In an attempt to better understand damage accumulation mechanisms in thermal fatigue,
dislocation substructures forming in 316L steel during one specific test were examined and
simulated. Hence, thin foils taken out of massive, tested specimens were first observed in
transmission electron microscopy (TEM). These observations help in determining one initial
dislocation configuration to be implemented in a 3D model combining 3D discrete dislocation
dynamics simulation (DDD) and finite element method computations (FEM). It was found
that the simulated mechanical behaviour of the DDD microstructure is compatible with FEM
and experimental data. The numerically generated dislocation microstructure is similar to
ladder-like dislocation arrangements as found in many fatigued f.c.c. materials. Distinct
mechanical behaviour for the two active slip systems was shown and deformation
mechanisms were proposed.
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INTRODUCTION

Thermal fatigue in the temperature range 300K-700K constitutes typical loading conditions
for metallic pressure vessels and piping used in the electric power industry [1]. In these
conditions, component material failure results from transgranular crack initiation and
propagation [2], regardless of the component surface state finish [3]. Transgranular cracking
therefore results from damage accumulation mechanisms operating at a scale much smaller
than the metal grain size. Hence, little is known about dislocation based, mesoscopic scale
deformation mechanisms in component materials undergoing thermal fatigue. In an attempt to
better understand phenomenon involved in thermal induced cyclic plasticity, an innovative
investigation approach is proposed here and adapted to a widely used component material,
316L austenitic stainless steel (f.c.c. crystalline structure).

One ‘classical’ tool to investigate fatigue dislocation substructure is the transmission electron
microscopy (TEM) technique [4-8]. Though informative, TEM examinations are very difficult
to rationalise in terms of dynamic deformation mechanisms, due to the very large number of
dislocations involved. In addition, it is very difficult to establish how the identified
mechanisms influence larger-scale mechanical behaviour. One way to cope with these
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problems is to use numerical modelling that couples information coming from different
scales. Modelling reliability can then be established by direct comparisons of numerical
results with adequate experimental data. In the present paper, dislocation substructures
forming in 316L steel during a specific test are examined and simulated in order to better
understand damage accumulation mechanisms in thermal fatigue. In the next section, we will
describe in detail both the selected experimental setting (thermal fatigue tests, TEM) and the
proposed numerical methods (discrete dislocation dynamics, finite element method). In the
next section, an application of these methods to a specific thermal fatigue test will be
presented and the results given. Information coming out of the proposed approach is summed
up in a brief conclusion.

EXPERIMENTS

Thermal fatigue tests

The specimen’s geometry is presented in Fig. 1. Specimens are machined from plates in the
solution annealed state. The mean grain size is about 50µm. Portions of the external wall will
be extracted after fatigue test for TEM examination. These portions undergo electropolishing
before testing, in order to eliminate any residual plastic deformation that can affects the
interpretation of the results. During the test, the external specimen surface is heated by HF
induction while the internal surface is continuously cooled by flowing water. This gives rise
to a radial temperature gradient ∆T = [Text -Tin] between the two walls, enforcing a thermal-
induced stress field. Fatigue loading conditions are achieved by switching the heating on and
off periodically (f ≈ 8×10-3 Hz), up to 100 cycles. In these conditions, temperature of the
internal wall fluctuates from 22°C to 80°C during the cycle, whereas temperature of the
external wall varies between 32°C and 380°C.
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Figure 1: (a) Thermal fatigue experimental setting. (b) TEM observation of a surface grain
after 100 thermal cycles. Left image, the diffracting vector g = 111 .
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TEM observations

After the test, 2cm×1cm×0.1cm slices from (the electropolished) parts of the external wall
surface are cut out of the massive tube specimens, using a rotating precision saw. These slices
are further thinned to 100µm by mechanically polishing the back. Then, 3mm disks are
punched out. TEM thin foils are prepared from the disks using back side electropolishing in a
twin jet Tenupol. The TEM observations are then made in a CM-20 Philips microscope
operated at 200kV.

Out of the observed thin foils, one single surface grain has been selected for a complete
indexation, with a view to use these results for DDD simulations. According to electron
diffraction pattern analysis, the selected grain plane is found to be close to (211). In Figure
1(b), one pair of bands separated by a 100nm wide channel is clearly visible. The channel is
partially filled with dislocation lines. It can be shown that the 30 nm thick bands are parallel
to the ( 111 ) gliding planes and that band and channel dislocations share the same Burgers
vector ½[110] (see reference [9]). The two possible active slip systems for dislocations
present in and between these bands are thus ( 111 )[110] and ( 111 )[110].

MODELLING

Finite element method (FEM) computations

Strain and stress fields generated during test are computed by FEM, using CASTEM-2000
software. By taking advantage of specimen geometry, the problem corresponding to the
experimental setting as shown in Fig. 1 can be solved with a mesh corresponding to one
fourth of the specimen. Eight node cubic elements were used with a mean element width of
about 175 µm (see figure 2(a)). Calculations were done as follows. Experimentally obtained
temperatures in specimen internal and external walls are first imposed to the nodes
corresponding to these respective walls. Temperature of every node inside the meshing is then
computed assuming thermal equilibrium and the mentioned thermal boundary conditions. In
the next computing step, the ‘complete’ thermal field together with suitable mechanical
boundary conditions enforce a thermal induced displacement field. Associated strain and
stress fields are computed assuming an elastoplastic model involving a linear kinematic
yielding criteria that fits experimental fatigue data. Stresses estimated with this model agree
with experimental saturation values at 300K.

FEM computations gives an equibiaxial thermal induced stress state (σzz = σθθ 

= σ) which
agrees with analytical expressions found by Fissolo [2]. The stress amplitude is σ = -230MPa
when T = Tmax and σ = 130MPa when T = Tmin. These conditions are often referred to as ‘out
of phase’ thermal fatigue, i.e. the compressive stress (negative) peaks whereas the temperature
is maximal. The mechanical stress-strain curve is plotted in Figure 2(b), for the zz
components.
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Figure 2: (a)-FEM Von Mises equivalent stress in MPa at maximal temperature T = 653K.
The represented mesh corresponds to the part of the specimen located inside the induction coil
depicted in Figure 1(a). Note that the external wall undergoes compressive stress whereas the
internal wall is in tension. (b)-External wall total loading (mechanical+thermal): σzz(εzz).

The resolved shear stresses τR are then computed on all the 12 f.c.c. glide system of the grain
identified in previous section. It is worth mentioning that |τR| on the ( 111 )[110] and

( 111 )[110] slip systems (those of the identified 2D bands) are very similar, a condition we
will later refer to as ‘double’ slip.

Discrete dislocation dynamics (DDD) simulation

The constitutive principles of DDD modelling are described in details elsewhere [10].
Numerically generated dislocations inside the simulation box glide in a homothetic 3D f.c.c.
lattice, with a lattice parameter of 10b (2.5×10-9m), where b is the Burgers vector magnitude.
The dislocation lines are discretisized in screw and edge segments, whose displacement
occurs over discrete time steps. For each time step, the effective resolved shear stresses acting
on all the segments are computed. Each segment is then moving at a velocity proportional to
the effective stress. The DDD code treats all the possible 3D annihilation/recombination
interactions between the dislocations. A stochastic temperature-dependant cross-slip
mechanism is implemented as well.

We will now attempt to simulate the dynamic evolution under cyclic thermal load of the same
dislocation band pair as described in first section. The DDD simulation box is taken as a
faceted cylinder with a selected radius and height of 5µm. The simulation box size is chosen
so as to be similar to the experimentally observed separation distance between the selected
pair of bands and the nearest pair (2µm). This box represents a part of a 316L grain, with
upper and bottom faces parallel to (211) planes. Dislocations that reach the bottom and
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peripheral cylinder faces are stopped, producing strong barrier effects like dense dislocation
walls and/or highly disoriented grain boundaries. The effect of the free surface is accounted
for by allowing dislocations reaching the upper face to escape. The initial dislocation
microstructure consists of 2 µm long pinned dislocation segments in the ( 111 )[110] slip
system only (43 segments in all), a system that is being referred to as the primary slip system.

Each pinned segment acts as a Frank-Read source with random sign and orientation. The
initial sources are positioned at random inside two 30nm wide parallel bands centred in the
simulation box and separated by a 100nm wide channel. This initial dislocation
microstructure is selected so as to quickly obtain a configuration complying with TEM
observations thus, with a known number of cycles N = 100. The initial DDD dislocation
configuration does not correspond to the microstructure of cycle N = 0 of the performed test,
but instead to the Nth cycle, with 0 < N < 100.

Position of the initial
dislocation sources(211)

5µm

φ 10µm

100nm

(a)

Figure 3: (a) Schematic representation of the initial dislocation structure (arbitrary scale). (b)
Numerically generated dislocation microstructure inside the whole simulation box, viewed
along [211], after 3 applied cycles

The numerical fatigue test is performed in imposed applied stress conditions. The applied
stress field is as determined with the help of FEM computations. This field is assumed to be
homogenous inside the whole simulation box, i.e. the same applied stress tensor is used for
each dislocation segment. Note that although the applied stress field is homogeneous, the
effective shear stress field that is felt by each dislocation segment is heterogeneous, due to the
contribution of the internal stress field generated by the dislocation segments. In practice, the
loading is enforced stepwise, 5MPa by 5MPa. Each time the applied load is changed,
dislocations move and multiply over as many computing steps (with δt=10-9sec) as needed to
obtain a stable dislocation configuration, i.e. one that equilibrates the applied load. Therefore,
as many as 460MPa/5MPa = 92 stable dislocation configurations have to be determined for
each complete thermal cycle. Because one thermal cycle lasts 120 seconds, each stepwise load
increase correspond to 120s/92 ∼1.3 seconds. As dislocations move much faster than the
applied load increase rate, equilibrium is usually achieved within as few as N = 102-103 time
steps, i.e. Nδt ∼ 10-7-10-6 seconds. At this point, if dislocation climb is neglected, cross slip is
the only time-dependant mechanism that can further affects the microstructure inside the

(b)
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simulation box. This means that quasi-static approximation can here be fully assumed
provided no more cross slip occurs within the ∼1.3 second following stabilisation. This
assumption has been checked in a separate paper [9]. Hence, the simulated time can here be
converted into an equivalent time compatible with the actual test duration.

Results

When the initial dislocation sources are placed inside the simulation box and applied load
gradually increases, dislocation density in the primary slip system increases smoothly as
shown in figure 4(a). This regime lasts for the first half of the first simulated cycle, i.e. until T
= Tmax. At this point, the dislocation density in the deviate slip system (we recall that ρ(t=0) = 0
in this slip system) starts increasing due to intense cross slip, until it is about half as large as
in the primary slip system.

Over the last simulated applied cycle (third one), the equivalent mechanical strain of the
simulation attains ∆εeq ~ 2×10-3. Average dislocation density during that same cycle is around
~5×1012 m-2. By comparison, the equivalent mechanical FEM strain amplitude is ∆εeq

~ 2.2×10-3 when the thermal expansion contribution is subtracted. However, it seems quite
obvious that the straining is not homogeneous inside the simulation box. This is reflected by
the heterogeneity of the dislocation densities. For example, the dislocation density computed
inside a sphere of radius 500nm located inside the central bands is ρ≈5.4×1013 m-2. If that
same sphere is now positioned outside the bands, the density ρ is reduced down to 7.9×1012

m-2. At this stage thus, the DDD strain amplitude reasonably agrees with elastoplastic FEM
results although a simplified model has been used: only 2 glide systems are considered, the
influence of the image forces is neglected and no internal obstacles such as local twins or
misorientation are taken into account. In a forthcoming study, all these points could be
implemented and tested.

In the primary slip system (1 11)[110], shear strain accumulates from one cycle to an other,
i.e. it is not fully reversible (see Figure 4b). In addition, dislocation density in the primary slip
system is about twice that in the secondary slip system, whereas shear strain associated with
the later is three times higher than that associated with the former. Hence, by opposition with
the secondary system, the dislocation arrangements in the primary slip system maximize the
induced shear strain.
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Figure 4: (a)-Dislocation density evolution ρ(time) on primary and deviate slip systems
versus time. The plotted densities are associated with the whole simulation box. Local
dislocations densities can be much higher. (b) Shear strain (left axis – thick lines) and applied
shear stress triangular wave (right axis – thin lines).

Interestingly, the mechanical behaviour of the two involved slip systems are clearly distinct,
as plotted in figure 4b. Shear strain γ in the deviate slip system (11 1)[110] is periodic and
vanishes one time per cycle. It is worth mentioning that a γ = 0 strain is associated with a non-
vanishing dislocation density. This means that dislocations in this system can arrange in low
shear strain configurations with a strongly reversible character. Incidentally, most of the
(11 1) slip planes do not cross the crystal top surface whereas dislocations present in these
planes keep gliding there until they form stable, low energy dislocation substructures. Indeed,
the (11 1)[110] dislocations located inside the channel between the two initial bands have a
strong edge-edge dipolar character. Dynamic ‘in test’ observations show dipoles to form in
large numbers as soon as the first applied load reversal begins. Obviously though, the cyclic
character of the applied load strongly increases the dipole formation probability. Once an
isolated dipole has formed, it promotes further dipole formation by capturing additional
isolated dislocations. When a few dipole clusters have formed, they rearrange in dislocation
walls perpendicular to the b vector [110] common to primary and deviate slip systems, as
soon as the applied stress becomes low enough. Secondary dislocations therefore tend to
stabilise the primary walls substructure at this particular stage of the cycling. We assume that
a secondary wall exists whenever at least 2 dipoles are positioned along [ 211 ] direction,
inside each 500nm thick (211) slice cut out of the simulation box. Using this criteria, an
average wall-wall separation of 250nm is measured. Note that dipole width inside the bands is
more or less constant: isolated dipole width distribution is similar as that of dipoles
everywhere else between the initial bands.

It is worth mentioning that during the presented simulations, new bands spontaneously form
at some distance (up to 1,5 µm) from the initial pair position. The new band formation occurs
when screw dislocations located in some ( 111 ) planes (located out of the initial band pair)

cross-slip back into some distant ( 111 ) planes, near the simulation box edges. Obviously, this
band formation mechanism is enhanced under the present ‘double’ slip loading conditions.
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New band formation can also be assisted by the stress field coming from the accumulated
dislocations at the simulation box edges thus, by the presence of a strong barrier.

CONCLUDING REMARKS

Although the present approach seems promising, many remaining questions have to be
addressed. For example, how does the simulation box size affects the results? Here, the
simulation box size has been chosen according to TEM observed minimal separation distance
between two pairs of bands. The boundary conditions in the simulation box do not account for
the actual grain boundary in the metal. This could be done by calculating more accurately the
stress fields existing inside the grain.

In addition, the top surface of the simulation box, i.e. the external wall of the tested specimen,
was not treated in a completely realistic way: dislocation segments crossing the surface were
cut away. A specific treatment of the boundary conditions relevant to the presence of an oxide
layer and/or a traction free surface has to be implemented. Finally, due to the very large
computing time, only about 3 cycles have been simulated. The stability of the results with
time could be addressed. Therefore improved DDD algorithms are needed.
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